全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Micromachines  2013 

Polydimethylsiloxane (PDMS) Sub-Micron Traps for Single-Cell Analysis of Bacteria

DOI: 10.3390/mi4040357

Keywords: microfluidics, single-cell analysis, E. coli, bacteria

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microfluidics has become an essential tool in single-cell analysis assays for gaining more accurate insights into cell behavior. Various microfluidics methods have been introduced facilitating single-cell analysis of a broad range of cell types. However, the study of prokaryotic cells such as Escherichia coli and others still faces the challenge of achieving proper single-cell immobilization simply due to their small size and often fast growth rates. Recently, new approaches were presented to investigate bacteria growing in monolayers and single-cell tracks under environmental control. This allows for high-resolution time-lapse observation of cell proliferation, cell morphology and fluorescence-coupled bioreporters. Inside microcolonies, interactions between nearby cells are likely and may cause interference during perturbation studies. In this paper, we present a microfluidic device containing hundred sub-micron sized trapping barrier structures for single E. coli cells. Descendant cells are rapidly washed away as well as components secreted by growing cells. Experiments show excellent growth rates, indicating high cell viability. Analyses of elongation and growth rates as well as morphology were successfully performed. This device will find application in prokaryotic single-cell studies under constant environment where by-product interference is undesired.

References

[1]  Grünberger, A.; van Ooyen, J.; Paczia, N.; Rohe, P.; Schiendzielorz, G.; Eggeling, L.; Wiechert, W.; Kohlheyer, D.; Noack, S. Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments. Biotechnol. Bioeng. 2013, 110, 220–228, doi:10.1002/bit.24616.
[2]  Grunberger, A.; Paczia, N.; Probst, C.; Schendzielorz, G.; Eggeling, L.; Noack, S.; Wiechert, W.; Kohlheyer, D. A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. Lab Chip 2012, 12, 2060–2068, doi:10.1039/c2lc40156h.
[3]  Mustafi, N.; Grünberger, A.; Kohlheyer, D.; Bott, M.; Frunzke, J. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab. Eng. 2012, 14, 449–457, doi:10.1016/j.ymben.2012.02.002.
[4]  Schendzielorz, G.; Dippong, M.; Grünberger, A.; Kohlheyer, D.; Yoshida, A.; Binder, S.; Nishiyama, C.; Nishiyama, M.; Bott, M.; Eggeling, L. Taking control over control: Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synth. Biol. 2013, doi:10.1021/sb400059y.
[5]  Yin, H.; Marshall, D. Microfluidics for single cell analysis. Curr. Opin. Biotech. 2012, 23, 110–119, doi:10.1016/j.copbio.2011.11.002.
[6]  Miesenbock, G.; de Angelis, D.A.; Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 1998, 394, 192–195, doi:10.1038/28190.
[7]  Prindle, A.; Samayoa, P.; Razinkov, I.; Danino, T.; Tsimring, L.S.; Hasty, J. A sensing array of radically coupled genetic “biopixels”. Nature 2012, 481, 39–44.
[8]  Groisman, A.; Lobo, C.; Cho, H.; Campbell, J.K.; Dufour, Y.S.; Stevens, A.M.; Levchenko, A. A microfluidic chemostat for experiments with bacterial and yeast cells. Nat. Meth. 2005, 2, 685–689, doi:10.1038/nmeth784.
[9]  Di Carlo, D.; Aghdam, N.; Lee, L.P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal. Chem. 2006, 78, 4925–4930, doi:10.1021/ac060541s.
[10]  Skelley, A.M.; Kirak, O.; Suh, H.; Jaenisch, R.; Voldman, J. Microfluidic control of cell pairing and fusion. Nat. Methods 2009, 6, 147–152, doi:10.1038/nmeth.1290.
[11]  Moffitt, J.R.; Lee, J.B.; Cluzel, P. The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities. Lab Chip 2012, 12, 1487–1494, doi:10.1039/c2lc00009a.
[12]  Brouzes, E.; Medkova, M.; Savenelli, N.; Marran, D.; Twardowski, M.; Hutchison, J.B.; Rothberg, J.M.; Link, D.R.; Perrimon, N.; Samuels, M.L. Droplet microfluidic technology for single-cell high-throughput screening. P. Natl. Acad. Sci. 2009, 106, 14195–14200, doi:10.1073/pnas.0903542106.
[13]  Choi, K.; Ng, A.H.C.; Fobel, R.; Wheeler, A.R. Digital Microfluidics. Annu. Rev. Anal. Chem. 2012, 5, 413–440, doi:10.1146/annurev-anchem-062011-143028.
[14]  Ding, X.; Lin, S.-C.S.; Kiraly, B.; Yue, H.; Li, S.; Chiang, I.-K.; Shi, J.; Benkovic, S.J.; Huang, T.J. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. P. Natl. Acad. Sci. 2012.
[15]  Chiou, P.Y.; Ohta, A.T.; Wu, M.C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 2005, 436, 370–372, doi:10.1038/nature03831.
[16]  Dusny, C.; Fritzsch, F.S.O.; Frick, O.; Schmid, A. Isolated microbial single cells and resulting micropopulations grow faster in controlled environments. Appl. Environ. Microbiol. 2012, 78, 7132–7136, doi:10.1128/AEM.01624-12.
[17]  Fritzsch, F.S.O.; Rosenthal, K.; Kampert, A.; Howitz, S.; Dusny, C.; Blank, L.M.; Schmid, A. Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments. Lab Chip 2013, 13, 397–408, doi:10.1039/c2lc41092c.
[18]  Hsu, H.-y.; Ohta, A.T.; Chiou, P.-Y.; Jamshidi, A.; Neale, S.L.; Wu, M.C. Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media. Lab Chip 2010, 10, 165–172, doi:10.1039/b906593h.
[19]  Kortmann, H.; Chasanis, P.; Blank, L.M.; Franzke, J.; Kenig, E.Y.; Schmid, A. The envirostat—A new bioreactor concept. Lab Chip 2009, 9, 576–585, doi:10.1039/b809150a.
[20]  Kim, S.H.; Yamamoto, T.; Fourmy, D.; Fujii, T. Electroactive microwell arrays for highly efficient single-cell trapping and analysis. Small 2011, 7, 3239–3247, doi:10.1002/smll.201101028.
[21]  Ramser, K.; Hanstorp, D. Optical manipulation for single-cell studies. J. Biophotonics 2010, 3, 187–206, doi:10.1002/jbio.200910050.
[22]  Johann, R.M. Cell trapping in microfluidic chips. Anal. Bioanal Chem 2006, 385, 408–412, doi:10.1007/s00216-006-0369-6.
[23]  Svoboda, K.; Block, S.M. Biological applications of optical forces. Annu. Rev. Biophys. Biomed. Struct. 1994, 23, 247–285, doi:10.1146/annurev.bb.23.060194.001335.
[24]  Kobel, S.; Valero, A.; Latt, J.; Renaud, P.; Lutolf, M. Optimization of microfluidic single cell trapping for long-term on-chip culture. Lab Chip 2010, 10, 857–863, doi:10.1039/b918055a.
[25]  Khine, M.; Lau, A.; Ionescu-Zanetti, C.; Seo, J.; Lee, L.P. A single cell electroporation chip. Lab Chip 2005, 5, 38–43, doi:10.1039/b408352k.
[26]  Lee, P.J.; Hung, P.J.; Shaw, R.; Jan, L.; Lee, L.P. Microfluidic application-specific integrated device for monitoring direct cell–cell communication via gap junctions between individual cell pairs. Appl. Phys. Lett. 2005, 86, 223902, doi:10.1063/1.1938253.
[27]  Valero, A.; Post, J.N.; van Nieuwkasteele, J.W.; ter Braak, P.M.; Kruijer, W.; van den Berg, A. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab Chip 2008, 8, 62–67, doi:10.1039/b713420g.
[28]  Zhu, Z.; Frey, O.; Ottoz, D.S.; Rudolf, F.; Hierlemann, A. Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells. Lab Chip 2012, 12, 906–915, doi:10.1039/c2lc20911j.
[29]  Kim, M.-C.; Isenberg, B.C.; Sutin, J.; Meller, A.; Wong, J.Y.; Klapperich, C.M. Programmed trapping of individual bacteria using micrometre-size sieves. Lab Chip 2011, 11, 1089–1095, doi:10.1039/c0lc00362j.
[30]  Wang, P.; Robert, L.; Pelletier, J.; Dang, W.L.; Taddei, F.; Wright, A.; Jun, S. Robust growth of escherichia coli. Curr. Biol. 2010, 20, 1099–1103, doi:10.1016/j.cub.2010.04.045.
[31]  Long, Z.; Nugent, E.; Javer, A.; Cicuta, P.; Sclavi, B.; Cosentino Lagomarsino, M.; Dorfman, K.D. Microfluidic chemostat for measuring single cell dynamics in bacteria. Lab Chip 2013, 13, 947–954, doi:10.1039/c2lc41196b.
[32]  Gruenberger, A.; Probst, C.; Heyer, A.; Wiechert, W.; Frunzke, J.; Kohlheyer, D. Microfluidic picoliter bioreactor for microbial single-cell analysis: Fabrication, system setup and operation. J. Vis. Exp. 2013, doi:10.3791/50560.
[33]  M?nnik, J.; Driessen, R.; Galajda, P.; Keymer, J.E.; Dekker, C. Bacterial growth and motility in sub-micron constrictions. P. Natl. Acad. Sci. 2009, 106, 14861–14866, doi:10.1073/pnas.0907542106.
[34]  Lecault, V.; White, A.K.; Singhal, A.; Hansen, C.L. Microfluidic single cell analysis: From promise to practice. Curr. Opin. Chem. Biol. 2012, 16, 381–390, doi:10.1016/j.cbpa.2012.03.022.
[35]  Justice, S.S.; Hunstad, D.A.; Cegelski, L.; Hultgren, S.J. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Micro. 2008, 6, 162–168, doi:10.1038/nrmicro1820.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133