Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function) of the guard cell coupled with the morphology (form) and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.
References
[1]
Rolfe, P. Sensors and systems that mimic nature. Eng. Sci. Educ. J. 1997, 6, 155–166, doi:10.1049/esej:19970403.
[2]
Stroble, J.K.; Stone, R.B.; Watkins, S.E. An overview of biomimetic sensor technology. Sens. Rev. 2009, 28, 112–119, doi:10.1108/02602280910936219.
[3]
Del Valle, M. Bioinspired sensor systems. Sensors 2011, 11, 10180–10186, doi:10.3390/s111110180.
[4]
Hussain, M.; Wackerlig, J.; Lieberzeit, P. Biomimetic strategies for sensing biological species. Biosensors 2013, 3, 89–107, doi:10.3390/bios3010089.
[5]
Ciosek, P.; Wróblewski, W. Potentiometric electronic tongues for foodstuff and biosample recognition—An overview. Sensors 2011, 11, 4688–4701, doi:10.3390/s110504688.
Bar-Cohen, Y. Biomimetics Biologically Inspired Technologies; CRC/Taylor & Francis: Boca Raton, FL, USA, 2006.
[8]
Brebbia, C.A. Design and Nature III: Comparing Design in Nature with Science and Engineering; WIT: Boston, MA, USA, 2006.
[9]
Brebbia, C.A.; Collins, M.W. Design and Nature II: Comparing Design in Nature with Science and Engineering; WIT: Boston, MA, USA, 2004.
[10]
Brebbia, C.A.; Sucharov, L.J.; Pascolo, P. Design and Nature: Comparing Design in Nature with Science and Engineering; WIT: Boston, MA, USA, 2002.
[11]
Bleckmann, H.; Schmitz, H.; von der Emde, G. Nature as a model for technical sensors. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2004, 190, 971–981, doi:10.1007/s00359-004-0563-y.
[12]
Barth, F.G.; Humphrey, J.A.C.; Secomb, T.W. Sensors and Sensing in Biology and Engineering; Springer: Wien, NY, USA, 2003.
[13]
Toko, K. Biomimetic Sensor Technology; Cambridge University Press: Cambridge, UK, 2000.
[14]
Martin-Pereda, J.A.; Gonzalez-Marcos, A.P. A New Approach to Optical Fibre Sensing Techniques Based on the Sensory Systems of Living Bodies. In Handbook of Optical Fibre Sensing Technology; Lo?pez-Higuera, J.M., Ed.; Wiley: New York, NY, USA, 2002.
[15]
McGruer, N.E.; Ayers, J.; Davis, J.L.; Rudolph, A. Biomimetic Flow and Contact/Bending Mems Sensors. In Neurotechnology for Biomimetic Robots; The MIT Press: Cambridge, MA, USA, 2002; pp. 13–30.
[16]
Krijnen, G.J.M.; Lammerink, T.S.J.; Wiegerink, R.J.; Casas, J. Cricket Inspired Flow-Sensor Arrays. In Proceedings of IEEE Sensors, Atlanta, GA, USA, 28–31 October 2007.
[17]
Wu, W.-C.; Schenato, L.; Wood, R.J.; Fearing, R.S. Biomimetic Sensor Suite for Flight Control of a Micromechanical Flying Insect: Design and Experimental Results. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, USA, 14–19 September 2003.
[18]
Van der Spiegel, J.; Nishimura, M. Biologically Inspired Vision Sensor for the Detection of Higher-Level Image Features. In Proceedings of the 2003 IEEE Conference on Electron Devices and Solid-State Circuits, HongKong, 2003; pp. 11–16.
[19]
Jaxx, K.N.; Hannaford, B. Mechatronic design of an actuated biomimetic length and velocity sensor. IEEE Trans. Rob. Autom. 2004, 20, 390–398, doi:10.1109/TRA.2004.825476.
[20]
Kuc, R. Biomimetic sonar and neuromorphic processing eliminate reverberation artifacts. IEEE Sens. J. 2007, 7, 361–369, doi:10.1109/JSEN.2006.890126.
[21]
Skordos, A.; Chan, P.H.; Vincent, J.F.V.; Jeronimidis, G. A novel strain sensor based on the campaniform sensillum of insects. Phys. Trans. R. Soc. Lond. A 2002, 360, 239–253, doi:10.1098/rsta.2001.0929.
[22]
Fraden, J. Handbook of Modern Sensors: Physics, Designs, and Applications; Springer: New York, NY, USA, 2004.
[23]
Wilson, J.S. Sensor Technology Handbook; Elsevier: Boston, MA, USA, 2005.
[24]
Frank, R. Understanding Smart Sensors; Artech House: Norwood, MA, USA, 1996.
[25]
Webster, J.G. The Measurement, Instrumentation, and Sensors Handbook; CRC Press in Cooperation with IEEE Press: Boca Raton, FL, USA, 1999.
[26]
Stillwell, H.R. Electronic Product Design for Automated Manufacturing; Marcel Dekker: New York, NY, USA, 1989.
Haskell, B. Portable Electronics Product Design & Development: For Cellular Phones, Pdas, Digital Cameras, Personal Electronics and More; McGraw-Hill Professional: New York, NY, USA, 2009.
[29]
Ulrich, K.T.; Eppinger, S.D. Product Design and Development; McGraw-Hill/Irwin: Boston, MA, USA, 2004.
[30]
Ullman, D.G. The Mechanical Design Process, 4th ed. ed.; McGraw-Hill, Inc.: New York, NY, USA, 2009.
Otto, K.N.; Wood, K.L. Product Design: Techniques in Reverse Engineering and New Product Development; Prentice-Hall: Upper Saddle River, NJ, USA, 2001.
[33]
Doebelin, E.O. Measurement Systems: Application and Design; McGraw-Hill: Boston, MA, USA, 2004.
[34]
Toko, K. Measurement of Taste and Smell Using Biomimetic Sensor. In Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Maastricht, The Netherlands, 25–29 January 2004; pp. 201–207.
[35]
Ghasemi-Varnamkhasti, M.; Mohtasebi, S.S.; Siadat, M. Biomimetic-based odor and taste sensing systems to food quality and safety characterization: An overview on basic principles and recent achievements. J. Food Eng. 2010, 100, 377–387, doi:10.1016/j.jfoodeng.2010.04.032.
[36]
Tan, Y.; Nie, L.; Yao, S. A piezoelectric biomimetic sensor for aminopyrine with a molecularly imprinted polymer coating. Analyst 2001, 126, 664–668, doi:10.1039/b100693m.
[37]
Nagle, H.T.; Gutierrez-Osuna, R.; Schiffman, S.S. The how and why of electronic noses. IEEE Spectr. 1998, 35, 22–31.
[38]
Che Harun, F.K.; Taylor, J.E.; Covington, J.A.; Gardner, J.W. An electronic nose employing dual-channel odour separation columns with large chemosensor arrays for advanced odour discrimination. Sens. Actuat. B Chem. 2009, 141, 134–140, doi:10.1016/j.snb.2009.05.036.
[39]
Bar-Cohen, Y. Biomimetics—Using nature to inspire human innovation. J. Bioinspir. Biomim. 2006, 1, P1–P12, doi:10.1088/1748-3182/1/1/P01.
[40]
Brudzewski, K.; Osowski, S.; Ulaczyk, J. Differential electronic nose of two chemo sensor arrays for odor discrimination. Sens. Actuat. B Chem. 2010, 145, 246–249, doi:10.1016/j.snb.2009.12.005.
[41]
Chen, P.C.; Ishikawa, F.N.; Chang, H.K.; Ryu, K.; Zhou, C. A nanoelectronic nose: A hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. Nanotechnology 2009, 20, 1–8.
[42]
Lee, S.H.; Park, T.H. Recent advances in the development of bioelectronic nose. Biotechnol. Bioprocess. Eng. 2010, 15, 22–29, doi:10.1007/s12257-009-3077-1.
[43]
Williamson, M.M. Biologically Inspired Approaches to Computer Security; Information Infrastructure Laboratory, HP Laboratories: Bristol, UK, 2002.
[44]
Smith, C.U.M. Biology of Sensory Systems; John Wiley: Chichester, NY, USA, 2000.
[45]
M?ller, A.R. Sensory Systems: Anatomy and Physiology; Academic Press: Boston, MA, USA, 2003.
[46]
Spudich, J.L.; Satir, B.H. Sensory Receptors and Signal Transduction; Wiley-Liss: New York, NY, USA, 1991; Volume 10.
[47]
Chamovitz, D. What a Plant Knows: A Field Guide to the Senses; Scientific American/Farrar, Straus and Giroux: New York, NY, USA, 2012.
[48]
Nagel, J.K.S.; Stone, R.B.; McAdams, D.A. Exploring the Use of Category and Scale to Scope a Biological Functional Model. In Proceedings of the ASME International Design Engineering Technical Conference & Computers and Information in Engineering Conference, IDETC/CIE 2010, Montreal, Quebec, Canada, 15–18 August 2010.
[49]
Nagel, J.K.S.; Stone, R.B. A Systematic Approach to Biologically-Inspired Engineering Design. In Proceedings of the ASME International Design Engineering Technical Conference & Computers and Information in Engineering Conference, IDETC/CIE 2011, Washington, DC, USA, 29–31 August 2011.
Gebeshuber, I.C.; Drack, M. An attempt to reveal synergies between biology and mechanical engineering. Proc. Inst. Mech. Eng. C 2008, 222, 1281–1287, doi:10.1243/09544062JMES890.
[52]
Hirtz, J.; Stone, R.; McAdams, D.; Szykman, S.; Wood, K. A functional basis for engineering design: Reconciling and evolving previous efforts. Res. Eng. Design 2002, 13, 65–82.
Campbell, N.A.; Reece, J.B. Biology; Pearson Benjamin Cummings: San Francisco, FL, USA, 2003.
[55]
Raven, P.H.; Johnson, G.B. Biology; McGraw-Hill: Boston, MA, USA, 2002.
[56]
Martin, E.; Hine, R.S. Oxford Dictionary of Biology; Oxford University Press: Oxford, UK, 2000.
[57]
Henderson, I.F.; Lawrence, E. Henderson’s Dictionary of Biology; Pearson Education: Harlow, Essex, England, 2005.
[58]
Farabee, M.J. Plants and Their Structure. Available online: http://www.biologie.uni-hamburg.de/b-online/library/onlinebio/BioBookPLANTANAT.html (accessed on 1 May 2010).
Gao, P.; Wang, Z.L. Self-assembled nanowire-nanoribbon junction arrays of ZnO. J. Phys. Chem. B 2002, 106, 12653–12658, doi:10.1021/jp0265485.
[70]
Bhushan, B. Springer Handbook of Nanotechnology; Springer: New York, NY, USA, 2004.
[71]
Lavrik, N.V.; Sepaniak, M.J.; Datskos, P.G. Cantilever transducers as a platform for chemcial and biological sensors. Rev. Sci. Instrum. 2004, 75, 2229–2253, doi:10.1063/1.1763252.
[72]
Law, M.; Goldberger, J.; Yang, P. Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 2004, 34, 83–122, doi:10.1146/annurev.matsci.34.040203.112300.
[73]
Menon, M.; Srivastava, D. Nanomechanics of silicon nanowires. Phys. Rev. B 2004, 70, 125313, doi:10.1103/PhysRevB.70.125313.
[74]
Postma, H.W.C.; Kozinsky, I.; Husain, A.; Roukes, M.L. Dynamic range of nanotube- and nanowire-based electromechanical systems. Appl. Phys. Lett. 2005, 86, 223105, doi:10.1063/1.1929098.
[75]
Tonisch, K.; Cimalla, V.; Will, F.; Weise, F.; Stubenrauch, M.; Albrecht, A.; Hoffmann, M.; Ambacher, O. Nanowire-based electromechanical biomimetic sensor. Phys. E 2007, 37, 208–211, doi:10.1016/j.physe.2006.06.002.
[76]
Lu?bbers, B.; Kittler, G.; Ort, P.; Linkohr, S.; Wegener, D.; Baur, B.; Gebinoga, M.; Weise, F.; Eickhoff, M.; Maroldt, S.; et al. A novel gan-based multiparameter sensor system for biochemical analysis. Phys. Status Solidi C 2008, 5, 2361–2362, doi:10.1002/pssc.200778726.
[77]
Niebelschu?tz, F.; Cimalla, V.; Tonisch, K.; Haupt, C.; Bru?ckner, K.; Stephan, R.; Hein, M.; Ambacher, O. Algan/gan-based mems with two-dimensional electron gas for novel sensor applications. Phys. Status Solidi C 2008, 5, 1914–1916, doi:10.1002/pssc.200778424.
[78]
Brueckner, K.; Niebelschuetz, F.; Tonisch, K.; Stephan, R.; Cimalla, V.; Ambacher, O.; Hein, M.A. Resonant Piezoelectric Algan/Gan Mems Sensors in Longitudinal Mode Operation. In Proceedings of the Micro Electro Mechanical Systems (MEMS 2009), Sorrento, Italy, 25–29 January 2009; pp. 927–930.
Kong, X.Y.; Wang, Z.L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 2003, 3, 1625–1631, doi:10.1021/nl034463p.
[83]
Richters, J.-P.; Voss, T.; Wischmeier, L.; Ruckmann, I.; Gutowski, J. Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires. Appl. Phys. Lett. 2008, 92, 011103, doi:10.1063/1.2829598.
[84]
Tenhaeff, W.E.; Gleason, K.K. Initiated and oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD. Adv. Funct. Mater. 2008, 18, 979–992, doi:10.1002/adfm.200701479.
Fan, Z.; Lu, J.G. Chemical sensing with ZnO nanowire field-effect transistor. IEEE Trans. Nanotechnol. 2006, 5, 393–396, doi:10.1109/TNANO.2006.877428.
[88]
Mulchandani, A.; Sadik, O.A. Chemical and Biological Sensors for Environmental Monitoring; American Chemical Society: Washington, DC, USA, 2000.
[89]
Fryxell, G.E.; Cao, G. Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors; Imperial College Press: London, UK, 2007.
[90]
Amann, A.; Smith, D. Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring; World Scientific: Hackensack, NJ, USA, 2005.
[91]
Cao, W.; Duan, Y. Breath analysis: Potential for clinical diagnosis and exposure assessment. Clin. Chem. 2006, 52, 800–811, doi:10.1373/clinchem.2005.063545.
[92]
Spichiger-Keller, U.E. Chemical Sensors and Biosensors for Medical and Biological Applications; Wiley-VCH: Weinheim, Germany, 1998.
[93]
Zhang, X.; Ju, H.; Wang, J. Electrochemical Sensors, Biosensors and Their Biomedical Applications; Elsevier/Academic Press: Amsterdam, The Netherlands, 2008.
[94]
Wynn, D.; Clarkson, J. Models of Designing. In Design Process Improvement; Clarkson, J., Eckert, C., Eds.; Springer: London, UK, 2005; pp. 34–59.