全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Quantification and Genetic Diversity of Toxigenic Fusarium Species in Northern Europe as Compared to Those in Southern Europe

DOI: 10.3390/microorganisms1010162

Keywords: Fusarium, mycotoxins, diversity, Europe, qPCR

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fusarium species produce important mycotoxins, such as deoxynivalenol (DON), nivalenol (NIV) and T-2/HT-2-toxins in cereals. The highest DON and T-2/HT-2 toxin levels in northern Europe have been found in oats. About 12%–24% of Finnish oat samples in 2012 contained >1.75 mg·kg ?1 of DON, which belongs to type B trichothecenes. Fusarium graminearum is the most important DON producer in northern Europe and Asia and it has been displacing the closely related F. culmorum in northern Europe. The 3ADON chemotype of F. graminearum is dominant in most northern areas, while the 15ADON chemotype of F. graminearum is predominating in Central and southern Europe. We suggest that the northern population of F. graminearum may be more specialized to oats than the southern population. Only low levels of F. culmorum DNA were found in a few oat samples and no correlation was found between F. culmorum DNA and DON levels. DNA levels of F. graminearum were in all cases in agreement with DON levels in 2011 and 2012, when DON was measured by gas chromatography-mass spectrometry (GC-MS). When the RIDA ? QUICK SCAN kit results (DON) were compared to DNA levels of F. g raminearum, the variation was much higher. The homogenization of the oats flour by grinding oats with 1 mm sieve seems to be connected to this variation. There was a significant correlation between the combined T-2 and HT-2 and the combined DNA levels of F. langsethiae and F. sporotrichioides in Finland in 2010–2012.

References

[1]  Ward, T.J.; Bielawski, J.P.; Kistler, H.C.; Sullivan, E.; O’Donnell, K. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. Natl. Acad. Sci. USA 2002, 99, 9278–9283.
[2]  Laday, M.; Juhasz, A.; Mule, G.; Moretti, A.; Logrieco, A. Mitochondrial DNA diversity and lineage determination of European isolates of Fusarium graminearum (Gibberella zeae). Eur. J. Plant Pathol. 2004, 110, 545–550, doi:10.1023/B:EJPP.0000032394.39130.2c.
[3]  Toth, B.; Mesterhazy, A.; Horvath, Z.; Bartok, T.; Varga, M.; Varga, J. Genetic variability of central European isolates of the Fusarium graminearum species complex. Eur. J. Plant Pathol. 2005, 113, 35–45, doi:10.1007/s10658-005-0296-y.
[4]  Yli-Mattila, T.; Gagkaeva, T.; Ward, T.J.; Aoki, T.; Kistler, H.C.; O’Donnell, K. A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Far East of Russia. Mycologia 2009, 101, 841–852, doi:10.3852/08-217.
[5]  Yli-Mattila, T.; Gagkaeva, T. Molecular Chemotyping of Fusarium graminearum, F. culmorum and F. cerealis Isolates from Finland and Russia. In Molecular Identification of Fungi; Gherbawy, Y., Voigt, K., Eds.; Springer Verlag: New York, NY, USA, 2010; pp. 159–177.
[6]  Talas, F.; Parzies, H.K.; Miedaner, T. Diversity in genetic structure and chemotype composition of Fusarium graminearum sensu stricto populations causing wheat head blight in individual fields in Germany. Eur. J. Plant Pathol. 2011, 131, 39–48, doi:10.1007/s10658-011-9785-3.
[7]  Sarver, B.A.J.; Ward, T.J.; Gale, L.R.; Broz, K.; Kistler, H.C.; Aoki, T.; Nicholson, P.; Carter, J.; O’Donnell, K. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet. Biol. 2011, 48, 1096–1107, doi:10.1016/j.fgb.2011.09.002.
[8]  Chandler, E.A.; Simpson, D.R.; Sthonsett, M.A.; Nicholson, P. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum and Fusarium cerealis. Phys. Mol. Plant Pathol. 2003, 62, 355–367, doi:10.1016/S0885-5765(03)00092-4.
[9]  Mert-Türk, F.; Gencer, R. Distribution of the 3-AcDON, 15-AcDON and NIV chemotypes of Fusarium culmorum in the North-West of Turkey. Plant Prot. Sci. 2013, 49, 57–64.
[10]  Stepien, L.; Popiel, D.; Koczyk, G.; Chelkowsky, J. Wheat-infecting Fusarium species in Poland—Their chemotypes and frequencies revealed by PCR assay. J. Appl. Genet. 2008, 49, 433–441, doi:10.1007/BF03195644.
[11]  Ward, T.J.; Clear, R.; Rooney, A.; O’Donnell, K.; Gaba, D.; Patrick, S.; Starkey, D.; Gilbert, J.; Geiser, D.; Nowicki, T. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 2008, 45, 473–484, doi:10.1016/j.fgb.2007.10.003.
[12]  Nielsen, L.K.; Jensen, J.D.; Nielsen, G.C.; Jensen, J.E.; Spliid, N.H.; Thomsen, I.K.; Justesen, A.F.; Collinge, D.B.; Jorgensen, L.N. Fusarium head blight of cereals in Denmark: Species complex and related mycotoxins. Phytopathology 2011, 101, 960–969, doi:10.1094/PHYTO-07-10-0188.
[13]  Hietaniemi, V. Cerveg Database (in Finnish). MTT Agrifood Research Finland: Jokioinen, Finland, 2013. Available online: https://portal.mtt.fi/portal/page/portal/kasper/pelto/peltopalvelut/cerveg (accessed on 26 November 2013).
[14]  Yli-Mattila, T.; Parikka, P.; Lahtinen, T.; R?m?, S.; Kokkonen, M.; Rizzo, A.; Jestoi, M.; Hietaniemi, V. Fusarium DNA Levels in Finnish Cereal Grains. In Current Advances in Molecular Mycology; Gherbawy, Y., Mach, R.L., Rai, M., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2009; pp. 107–138.
[15]  Yli-Mattila, T.; Paavanen-Huhtala, S.; Parikka, P.; Konstantinova, P.; Gagkaeva, T.; Eskola, M.; Rizzo, A. Occurrence of Fusarium fungi and their toxins in Finnish cereals in 1998 and 2000. J. Appl. Genet. 2002, 43A, 207–214.
[16]  Yli-Mattila, T.; Gagkaeva, T. Fusarium Toxins in Cereals in Northern Europe and Asia. In Fungi and Their Applications; Misra, J.K., Tewari, J.P., Deshmukh, S.K., Eds.; CRC press: Boca Raton, FL, USA, 2013. in press.
[17]  Mugrabi de Kuppler, A.L.; Steiner, U.; Sulyok, M.; Krska, R.; Oerke, E.-C. Genotyping and phenotyping of Fusarium graminearum isolates from Germany related to their mycotoxin biosynthesis. Int. J. Food Microbiol. 2011, 151, 78–86, doi:10.1016/j.ijfoodmicro.2011.08.006.
[18]  Jennings, P.; Coates, M.E.; Walsh, K.; Turner, J.A.; Nicholson, P. Determination of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolates from wheat crops in England and Wales. Plant Pathol. 2004, 53, 643–652, doi:10.1111/j.0032-0862.2004.01061.x.
[19]  Pasquali, M.; Giraud, F.; Brochot, C.; Cocco, E.; Hoffmann, L.; Bohn, T. Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat. Int. J. Food Microbiol. 2011, 137, 246–253.
[20]  Prodi, A.; Salomoni, D.; Bertacchini, E.; Alkadri, D.; Pisi, A.; Tonti, S.; Alberti, I.; Dal Prà, M.; Pancaldi, D.; Covarelli, L.; et al. Determination of deoxynivalenol and nivalenol producing chemotypes of Fusarium graminearum isolated from durum wheat in different Italian regions. Plant Breed. Seed Sci. 2011, 64, 75–80.
[21]  Nielsen, L.K.; Jensen, J.D.; Rodríguez, A.; J?rgensen, L.N.; Justesen, A.F. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int. J. Food Microbiol. 2012, 157, 384–392, doi:10.1016/j.ijfoodmicro.2012.06.010.
[22]  Waalwijk, C.; Kastelein, P.; de Vries, I.; Kerenyi, Z.; van der Lee, T.; Hesselink, T.; Kohl, J.; Kema, G. Major changes in Fusarium spp. in the Netherlands. Eur. J. Plant Pathol. 2003, 109, 743–754, doi:10.1023/A:1026086510156.
[23]  Nicholson, P.; Chandler, E.; Draeger, R.C.; Gosman, N.E.; Simpson, D.R.; Thomsett, M.; Wilson, A.H. Molecular tools to study epidemiology and toxicology of Fusarium head blight of cereals. Eur. J. Plant Pathol. 2003, 109, 691–703.
[24]  Rainio, A.J. Punahome Fusarium roseum Link—Gibberella saubinetii (Mont.) Sacc. ja sen aiheuttamat myrkytykset kaurassa. In Valtion maatalouskoetoiminnan Julkaisuja. (in Finnish); Valtioneuvoston Kirjap: Helsinki, Finland, 1932; Volume Volumn 50, pp. 1–45.
[25]  Uoti, J.; Ylim?ki, A. The occurrence of Fusarium species in cereal grain in Finland. Ann. Agric. Fenn. 1974, 13, 5–17.
[26]  Ylim?ki, A. The Mycoflora of cereal seeds and some feedstuffs. Ann. Agric. Fenn. 1981, 20, 74–78.
[27]  Ylim?ki, A.; Koponen, H.; Hintikka, E.-L.; Nummi, M.; Niku-Paavola, M.-L.; Ilus, T.; Enari, T.M. Mycoflora and Occurrence of Fusarium Toxins in Finnish Grain. In Materials and Processing Technology; Technical Research Centre of Finland: Espoo, Finland, 1979; Volume 21, pp. 1–28.
[28]  Rizzo, A.F. Determination of Major Naturally Occurring Fusarium Toxins in Finnish Grains and Feeds. The Haemolytic Activity of DON and T-2 Toxin, and the Lipid Peroxidation induced in Experimental Animals. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 24 March 1993.
[29]  Eskola, M.; Parikka, P.; Rizzo, A. Trichothecenes, ochratoxin A and zearalenone contamination and Fusarium infection in Finnish cereal samples in 1998. Food Addit. Contam. 2001, 18, 707–718.
[30]  Yli-Mattila, T. Ecology and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. J. Plant Pathol. 2010, 92, 7–18.
[31]  Suproniene, S.; Justesen, A.F.; Nicolaisen, M.; Mankeviciene, A.; Dabkevicius, Z.; Semaskiene, R.; Leistrumait, A. Distribution of trichothecene and zearalenone producing Fusarium species in grain of different cereal species and cultivars grown under organic farming conditions in Lithuania. Ann. Agric. Environ. Med. 2010, 17, 73–80.
[32]  Yli-Mattila, T.; R?m?, S.; Tanner, R.; Loiveke, H.; Hietaniemi, V. Fusarium DNA levels as compared to mycotoxin levels in Finnish and Estonian grain samples. Plant Breed. Seed Sci. 2011, 64, 131–140.
[33]  Aamot, H.U.; Hofgaard, I.S.; Brodal, G.; Ward, T.; Elameen, T.; Vr?lstad, T.; Larsen, G.; Clasen, P.E.; Elen, O.; Klemsdal, S. Genetic and Phenotypic Diversity of Fusarium gramienarum and Interactions between Fusarium Species in Oats. In Proceedings of the 12th European Fusarium Seminar, Bordeaux, France, 12–16 May 2013.
[34]  Yoruk, M.; Albayrak, G. Chemotyping of Fusarium graminearum and F. culmorum isolates from Turkey by PCR assay. Mycopathologia 2012, 173, 53–61, doi:10.1007/s11046-011-9462-2.
[35]  Davari, M.; Wei, S.H.; Babay-Ahari, A.; Arzanlou, M.; Waalwijk, C.; van der Lee, T.A.J.; Zare, R.; Gerrits van den Ende, A.H.G.; de Hoog, G.S.; van Diepeningen, A.D. Geographic differences in trichothecene chemotypes of Fusarium graminearum in the Northwest and North of Iran. World Mycotoxin J. 2013, 6, 137–150, doi:10.3920/WMJ2012.1493.
[36]  Yli-Mattila, T.; Ward, T.; O’Donnell, K.; Proctor, R.H.; Burkin, A.; Kononenko, G.; Gavrilova, O.; Aoki, T.; McCormick, S.P.; Gagkaeva, T. F. sibiricum sp. nov, a novel type A trichothecene-producing Fusarium from northern Asia closely related to F. sporotrichioides and F. langsethiae. Int. J. Food Microbiol. 2011, 147, 58–68, doi:10.1016/j.ijfoodmicro.2011.03.007.
[37]  Kachuei, R.; Yadegari, M.H.; Rezaie, S.; Allameh, A; Safaie, N.; Zaini, F.; Khanezad Yadzi, F. Investigation of stored wheat mycoflora, reporting the Fusarium cf. langsethiae in three provinces of Iran during 2007. Ann. Microbiol. 2009, 59, 383–390, doi:10.1007/BF03178344.
[38]  Yli-Mattila, T.; Paavanen-Huhtala, S.; Jestoi, M.; Parikka, P.; Hietaniemi, V.; Gagkaeva, T.; Sarlin, T.; Haikara, A.; Laaksonen, S.; Rizzo, A. Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae in cereal grains in Finland and Russia. Arch. Phytopathol. Plant Prot. 2008, 41, 243–260, doi:10.1080/03235400600680659.
[39]  Pettersson, H. Nivalenol production by Fusarium poae. Mycotoxin Res. 1991, 7A, 26–30, doi:10.1007/BF03192180.
[40]  Yli-Mattila, T.; Paavanen-Huhtala, S.; Parikka, P.; Hietaniemi, V.; Jestoi, M.; Rizzo, A. Real-Time PCR Detection and Quantification of Fusarium poae as Compared to Mycotoxin Production in Grains in Finland. In Proceedings of the 2nd International Symposium on Fusarium Head Blight, Orlando, FL, USA, 11–15 December 2004.
[41]  Sugiura, Y.; Fukasaku, K.; Tanaka, T.; Matsui, Y.; Ueno, Y. Fusarium poae and Fusarium crookwellense, fungi responsible for the natural occurrence of nivalenol in Hokkaido. Appl. Environ. Microbiol. 1993, 59, 3334–3338.
[42]  Pettersson, H.; Hedman, R.; Engstrom, B.; Elwinger, K.; Fossum, O. Nivalenol in Swedish cereals—Occurrence, production and toxicity towards chickens. Food Addit. Contam. 1995, 12, 373–376, doi:10.1080/02652039509374317.
[43]  Alexander, N.J.; Proctor, R.H.; McCormick, S.P. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusariu. Toxin Rev. 2009, 28, 198–215, doi:10.1080/15569540903092142.
[44]  McCormick, S.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From simple to complex mycotoxins. Toxins 2011, 3, 802–814, doi:10.3390/toxins3070802.
[45]  Alexander, N.J.; McCormick, S.P.; Waalwijk, C.; van der Lee, T.; Proctor, R.H. The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet. Biol. 2011, 38, 485–495.
[46]  Hietaniemi, V.; Kontturi, M.; R?m?, S.; Eurola, M.; Kangas, A.; Niskanen, M.; Saastamoinen, M. Contents of trichothecenes in oats during official variety, organic cultivation and nitrogen fertilization trials in Finland. Agric. Food Sci. 2004, 13, 54–67, doi:10.2137/1239099041837996.
[47]  Halstensen, A.S.; Nordby, K.C.; Eduard, W.; Klemsdal, S.S. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. J. Environ. Monitor. 2006, 8, 1235–1241, doi:10.1039/b609840a.
[48]  Waalwijk, C.; van der Heide, R.; de Vries, I.; van der Lee, T.; Schoen, C.; Costrel-de Corainville, G.; H?user-Hahn, I.; Kastelein, P.; K?hl, J.; Lonnet, P.; et al. Quantitative detection of Fusarium species in wheat using TaqMan. Eur. J. Plant Pathol. 2004, 110, 481–494, doi:10.1023/B:EJPP.0000032387.52385.13.
[49]  Rauvola, M.; Hovinen, T.; Hietaniemi, V.; Kaitaranta, J.; R?m?, S. Screening Deoxynivalenol in Oat using a Quickmethod with Comparison to a Quantitative GC-MS Analysis. Bordeaux, France, 12–16 May 2013; p. 127.
[50]  Rauvola, M. Determination of deoxynivalenol in grain by semi-quantitative quick test(in Finnish). Bachelor’s Thesis, Turku University of Applied Sciences, Turku, Finland, 2013.
[51]  Hakulin, S. Miten homemyrkkyj? jaetaan viljaketjussa? Proceedings of the Producer Seminar in H?meenlinna, 31 January 2013; Available online: http://www.vyr.fi/www/fi/tapahtumat/menneet_tapahtumat/viljelijaseminaari_31012013.php (accessed on 26 November 2013). (in Finnish).
[52]  European Commission. Commission Regulation (EC) No. 1881/2006 setting maximum levels of certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L364, 5–24.
[53]  Gagkaeva, T.; Gavrilova, O.P.; Yli-Mattila, T.; Loskutov, I.G. Sources of resistance to Fusarium head blight in VIR oat collection. Euphytica 2013, 3, 355–364.
[54]  R?m?, S.; Hietaniemi, V.; Parikka, P.; Hankoniemi, J. Lajittelu ja kuorinta v?hent?v?t viljojen hometoksiineja(in Finnish). Maaseudun Tiede, 2008. Available online: http://www.mtt.fi/maaseuduntiede/pdf/mtt-mt-v65n03s16a.pdf (accessed on 26 November 2013).
[55]  Parikka, P.; R?m?, S.; Hietaniemi, V. Fusarium infection and mycotoxins in Finnish cereals in 2005–2006. J. Plant Pathol. 2008, 90, 56–57.
[56]  Parikka, P.; Hakala, K.; Tiilikkala, K. Expected shifts in Fusarium species’ composition on cereal grain in Northern Europe due to climatic change. Food Addit. Contam. 2012, 29, 1543–1555, doi:10.1080/19440049.2012.680613.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133