全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2013 

Arsenic-Microbe-Mineral Interactions in Mining-Affected Environments

DOI: 10.3390/min3040337

Keywords: arsenic, prokaryotes, mine, mineral, tailings, contamination, remediation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The toxic element arsenic (As) occurs widely in solid and liquid mine wastes. Aqueous forms of arsenic are taken up in As-bearing sulfides, arsenides, sulfosalts, oxides, oxyhydroxides, Fe-oxides, -hydroxides, -oxyhydroxides and -sulfates, and Fe-, Ca-Fe- and other arsenates. Although a considerable body of research has demonstrated that microbes play a significant role in the precipitation and dissolution of these As-bearing minerals, and in the alteration of the redox state of As, in natural and simulated mining environments, the molecular-scale mechanisms of these interactions are still not well understood. Further research is required using traditional and novel mineralogical, spectroscopic and microbiological techniques to further advance this field, and to help design remediation schemes.

References

[1]  Drahota, P.; Filippi, M. Secondary arsenic minerals in the environment: A review. Environ. Int. 2009, 35, 1243–1255, doi:10.1016/j.envint.2009.07.004.
[2]  Kossoff, D.; Hudson-Edwards, K.A.; Dubbin, W.E.; Alfredsson, M.; Geraki, T. Cycling of As, P, Pb and Sb during weathering of mine tailings: Implications for fluvial environments. Mineral. Mag. 2012, 76, 1209–1228, doi:10.1180/minmag.2012.076.5.14.
[3]  Bowell, R.; Parshley, J. Arsenic Cycling in the Mining Environment. In U.S. EPA Workshop on Managing Arsenic Risks to the Environment: Characterization of Waste, Chemistry, and Treatment and Disposal Proceedings and Summary Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2003; pp. 10–11.
[4]  Foster, A.L.; Brown, G.E.; Tingle, T.N.; Parks, G.A. Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy. Am. Mineral. 1998, 83, 553–568.
[5]  Hudson-Edwards, K.A.; Jamieson, H.E.; Charnock, J.M.; Macklin, M.G. Arsenic speciation in waters and sediments of ephemeral floodplain pools, Ríos Agrio—Guadiamar, Aznalcóllar, Spain. Chem. Geol. 2005, 219, 175–192.
[6]  Meunier, L.; Walker, S.R.; Wragg, J.; Parsons, M.B.; Koch, I.; Jamieson, H.E.; Reimer, K.J. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Environ. Sci. Technol. 2010, 44, 2667–2674.
[7]  Lattanzi, P.; da Pelo, S.; Musu, E.; Atzei, D.; Elsener, B.; Fantauzzi, M.; Rossi, A. Enargite oxidation: A review. Earth Sci. Rev. 2008, 86, 62–88, doi:10.1016/j.earscirev.2007.07.006.
[8]  Bruckard, W.J.; Davey, K.J.; Jorgensen, F.R.A.; Wright, S.; Brew, D.R.M.; Haque, N.; Vance, E.R. Development and evaluation of an early removal process for the beneficiation of arsenic-bearing copper ores. Miner. Eng. 2010, 23, 1167–1173, doi:10.1016/j.mineng.2010.03.015.
[9]  Kwong, Y.T.J.; Beauchemin, S.; Hossain, M.F.; Gould, W.D. Transformation and mobilization of arsenic in the historic Cobalt mining camp, Ontario, Canada. J. Geochem. Explor. 2007, 92, 133–150, doi:10.1016/j.gexplo.2006.08.002.
[10]  Senior, G.D.; Smith, L.K.; Silvester, E.; Bruckard, W.J. The flotation of gersdorffite in sulfide nickel systems—A single mineral study. Int. J. Miner. Process. 2009, 93, 165–171, doi:10.1016/j.minpro.2009.07.009.
[11]  Osborne, T.H.; Jamieson, H.E.; Hudson-Edwards, K.A.; Nordstrom, D.K.; Walker, S.R.; Ward, S.A.; Santini, J.M. Microbial oxidation of arsenite in a subarctic environment: Diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidiser. BMC Microbiol. 2010, 10, 205, doi:10.1186/1471-2180-10-205.
[12]  Walker, S.R.; Jamieson, H.E.; Lanzirotti, A.; Andrade, C.F.; Hall, G.E.M. The speciation of arsenic in iron oxides in mine wastes from the Giant gold mine, NWT: Application of synchrotron micro-XRD and micro-XANES at the grain scale. Can. Mineral. 2005, 43, 1205–1224, doi:10.2113/gscanmin.43.4.1205.
[13]  Fawcett, S.E.; Jamieson, H.E. The distinction between ore processing and post-depositional transformation on the speciation of arsenic and antimony in mine waste and sediment. Chem. Geol. 2011, 283, 109–118, doi:10.1016/j.chemgeo.2010.02.019.
[14]  Walker, S.R.; Parsons, M.B.; Jamieson, H.E.; Lanzirotti, A. Arsenic mineralogy of near-surface tailings and soils: Influences on arsenic mobility and bioaccessibility in the Nova Scotia gold mining districts. Can. Mineral. 2009, 47, 533–556, doi:10.3749/canmin.47.3.533.
[15]  Morin, G.; Juillot, F.; Casiot, C.; Bruneel, O.; Personne, J.C.; Elbaz-Poulichet, F.; Leblanc, M.; Ildefonse, P.; Calas, G. Bacterial formation of tooeleite and mixed arsenic (III) or arsenic (V)-iron (III) gels in the Carnoules acid mine drainage, France. A XANES, XRD, and SEM study. Environ. Sci. Technol. 2003, 37, 1705–1712, doi:10.1021/es025688p.
[16]  Corriveau, M.C.; Jamieson, H.E.; Parsons, M.B.; Hall, G.E.M. Mineralogical characterization of arsenic in gold mine tailings from three sites in Nova Scotia. Geochem. Explor. Environ. Anal. 2011, 11, 179–192, doi:10.1144/1467-7873/09-246.
[17]  Weisener, C.G.; Guthrie, J.W.; Smeaton, C.M.; Paktunc, D.; Fryer, B.J. The effects of Ca-Fe-As coatings on microbial leaching of metals in arsenic bearing mine waste. J. Geochem. Explor. 2011, 110, 23–30, doi:10.1016/j.gexplo.2011.03.004.
[18]  Ashley, P.M.; Lottermoser, B.G. Arsenic contamination at the Mole River Mine, northern New South Wales. Aust. J. Earth Sci. 1999, 46, 861–874, doi:10.1046/j.1440-0952.1999.00748.x.
[19]  Hochella, M.F., Jr.; Moore, J.N.; Golla, U.; Putnis, A. A TEM study of samples from acid mine drainage systems: Metal-mineral association with implications for transport. Geochim. Cosmochim. Acta 1999, 63, 3395–3406, doi:10.1016/S0016-7037(99)00260-4.
[20]  Roussell, C.; Néel, C.; Bril, H. Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Sci. Total Environ. 2000, 263, 209–219, doi:10.1016/S0048-9697(00)00707-5.
[21]  Savage, K.S.; Tingle, T.N.; O’Day, P.A.; Waychunas, G.A.; Bird, D.K. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Appl. Geochem. 2000, 15, 1219–1244, doi:10.1016/S0883-2927(99)00115-8.
[22]  Mao, M.; Lin, J.; Pan, Y. Hemimorphite as a natural sink for arsenic in zinc deposits and related mine tailings: Evidence from single-crystal EPR spectroscopy and hydrothermal synthesis. Geochim. Cosmochim. Acta 2010, 74, 2943–2956, doi:10.1016/j.gca.2010.02.011.
[23]  Majzlan, J.; Lalinska, B.; Chovan, M.; Bl??, U.; Brecht, B.; G?ttlicher, J.; Steininger, R.; Hug, K.; Ziegler, S.; Gescher, J. A mineralogical, geochemical, and microbiological assessment of the antimony- and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia. Am. Mineral. 2011, 96, 1–13, doi:10.2138/am.2011.3556.
[24]  Mohan, D.; Pittman, C.U., Jr. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007, 142, 1–53, doi:10.1016/j.jhazmat.2007.01.006.
[25]  Hudson-Edwards, K.A.; Schell, C.; Macklin, M.G. Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Appl. Geochem. 1999, 14, 1015–1030, doi:10.1016/S0883-2927(99)00008-6.
[26]  Jamieson, H.E.; Robinson, C.; Alpers, C.N.; Nordstrom, D.K.; Poustovetov, A.; Lowers, H.A. The composition of coexisting jarosite-group minerals and water from the Richmond mine, Iron Mountain, California. Can. Mineral. 2005, 43, 1225–1242, doi:10.2113/gscanmin.43.4.1225.
[27]  Egal, M.; Casiot, C.; Morin, G.; Parmentier, M.; Bruneel, O.; Lebrun, S.; Elbaz-Poulichet, F. Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water. Chem. Geol. 2009, 265, 432–441, doi:10.1016/j.chemgeo.2009.05.008.
[28]  Rhine, E.D.; Garcia-Dominguez, E.; Phelps, C.D.; Young, L.Y. Environmental microbes can speciate and cycle arsenic. Environ. Sci. Technol. 2005, 39, 9569–9573, doi:10.1021/es051047t.
[29]  Stolz, J.F. Overview of Microbial Arsenic Metabolism and Resistance. In The Metabolism of Arsenite. Arsenic in the Environment 5; Santini, J.M., Ward, S.A., Eds.; CRC Press: London, UK, 2012; pp. 55–60.
[30]  Osborne, T.H.; Santini, J.M. Prokaryotic Aerobic Oxidation of Arsenite. In The Metabolism of Arsenite. Arsenic in the Environment 5; Santini, J.M., Ward, S.A., Eds.; CRC Press: London, UK, 2012; pp. 61–72.
[31]  Stolz, J.F.; Basu, P.; Santini, J.M.; Oremland, R.S. Selenium and arsenic in microbial metabolism. Annu. Rev. Microbiol. 2006, 60, 107–130, doi:10.1146/annurev.micro.60.080805.142053.
[32]  Tamaki, S.; Frankenberger, W.T., Jr. Environmental biochemistry of arsenic. Rev. Environ. Contam. Toxicol. 1992, 124, 79–110, doi:10.1007/978-1-4612-2864-6_4.
[33]  Santini, J.M.; Sly, L.I.; Wen, A.; Comrie, D.; De Wulf-Durand, P.; Macy, J.M. New arsenite-oxidizing bacteria isolated from Australian gold-mining environments—Phylogenetic relationships. Geomicrobiol. J. 2002, 19, 67–76, doi:10.1080/014904502317246174.
[34]  Santini, J.M.; Sly, L.I.; Schnagl, R.D.; Macy, J.M. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: Phylogenetic, physiological, and preliminary biochemical studies. Appl. Environ. Microbiol. 2000, 66, 92–97.
[35]  Battaglia-Brunet, F.; Itard, Y.; Garrido, F.; Delorme, F.; Crouzet, C.; Greffie, C.; Joulian, C. A simple biogeochemical process removing arsenic from mine drainage water. Geomicrobiol. J. 2006, 23, 201–211, doi:10.1080/01490450600724282.
[36]  Lieutaud, A.; van Lis, R.; Duval, S.; Capowiez, L.; Muller, D.; Lebrun, R.; Lignon, S.; Fardue, M.L.; Lett, M.C.; Nitschke, W.; et al. Arsenite oxidase from Ralstonia sp. 22: Characterization of the enzyme and its interaction with soluble cytochromes. J. Biol. Chem. 2010, 285, 20433–20441, doi:10.1074/jbc.M110.113761.
[37]  Drewniak, L.; Matlakowska, R.; Sklodowsska, A. Arsenite and arsenate metabolism of Sinorhizobium sp. M14 living in the extreme environment of the Zloty Stok gold mine. Geomicrobiol. J. 2008, 25, 363–370, doi:10.1080/01490450802402836.
[38]  Battaglia-Brunet, F.; Joulian, C.; Garrido, F.; Dictor, M.C.; Morin, D.; Coupland, K.; Johnson, D.B.; Hallberg, K.B.; Baranger, P. Oxidation of arsenite by Thiomnonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie Leeuwenhoek 2006, 89, 99–108, doi:10.1007/s10482-005-9013-2.
[39]  Duquesne, K.; Lieautaud, A.; Retarouchniak, J.; Muller, D.; Lett, M.C.; Bonnefoy, V. Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: From the strain isolation to the gene study. Environ. Microbiol. 2008, 10, 228–237.
[40]  Chang, J.S.; Lee, J.H.; Kim, I.S. Bacterial aox genotype from arsenic contaminated mine to adjacent coastal sediment: Evidences for potential biogeochemical arsenic oxidation. J. Hazard. Mater. 2011, 193, 233–242, doi:10.1016/j.jhazmat.2011.07.055.
[41]  Macy, J.M.; Nunan, K.; Hagen, K.D.; Dixon, D.R.; Harbour, P.J.; Cahill, M.; Sly, L.I. Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int. J. Syst. Bacteriol. 1996, 46, 1153–1157, doi:10.1099/00207713-46-4-1153.
[42]  Macy, J.M.; Santini, J.M.; Pauling, B.V.; O’Neill, A.H.; Sly, L.I. Two new arsenate/sulfate-reducing bacteria: Mechanisms of arsenate reduction. Arch. Microbiol. 2000, 173, 49–57, doi:10.1007/s002030050007.
[43]  Santini, J.M.; Stolz, J.F.; Macy, J.M. Isolation of a new arsenate-respiring bacterium—Physiological and phylogenetic studies. Geomicrobiol. J. 2002, 19, 41–52, doi:10.1080/014904502317246156.
[44]  Santini, J.M.; Streimann, I.C.A.; van den Hoven, R.N. Bacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine. Int. J. Syst. Evol. Microbiol. 2004, 54, 2241–2244, doi:10.1099/ijs.0.63059-0.
[45]  Heath, M.D.; Schoepp-Cothenet, B.; Osborne, T.H.; Santini, J.M. Arsenite Oxidase. In The Metabolism of Arsenite. Arsenic in the Environment 5; Santini, J.M., Ward, S.A., Eds.; CRC Press: London, UK, 2012; pp. 81–97.
[46]  Oremland, R.S.; Stolz, J.F.; Saltikov, C.W. Anaerobic Oxidation of Arsenite by Autotrophic Bacteria: The View from Mono Lake, California. In The Metabolism of Arsenite. Arsenic in the Environment 5; Santini, J.M., Ward, S.A., Eds.; CRC Press: London, UK, 2012; pp. 73–80.
[47]  Jones, R.A.; Koval, S.F.; Nesbitt, H.W. Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochim. Cosmochim. Acta 2003, 67, 955–965, doi:10.1016/S0016-7037(02)00996-1.
[48]  Smeaton, C.M.; Walshe, G.E.; Smith, A.M.L.; Hudson-Edwards, K.A.; Dubbin, W.E.; Wright, K.; Beale, A.M.; Fryer, B.J.; Weisener, C.G. Simultaneous release of Fe and As during the reductive dissolution of Pb-As jarosite by Shewanella putrefaciens CN32. Environ. Sci. Technol. 2012, 46, 12823–12831, doi:10.1021/es3021809.
[49]  Edwards, K.J.; Hu, B.; Hamers, R.J.; Banfield, J.F. A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiol. Ecol. 2001, 34, 197–206.
[50]  Saltikov, C.W.; Cifuentes, A.; Venkateswaran, K.; Newman, D.K. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl. Environ. Microbiol. 2003, 69, 2800–2809, doi:10.1128/AEM.69.5.2800-2809.2003.
[51]  Ohnuki, T.; Sakamoto, F.; Kozai, N.; Ozaki, T.; Yoshida, T.; Narumi, I.; Wakai, E.; Sakai, T.; Francis, A.J. Mechanisms of arsenic immobilization in a biomat from mine discharge water. Chem. Geol. 2004, 212, 279–290, doi:10.1016/j.chemgeo.2004.08.018.
[52]  Benzerara, K.; Morin, G.; Yoon, T.H.; Miot, J.; Tyliszczak, T.; Casiot, C.; Bruneel, O.; Farges, F.; Brown, G.E., Jr. Nanoscale study of As biomineralization in an acid mine drainage system. Geochim. Cosmochim. Acta 2008, 72, 3949–3963, doi:10.1016/j.gca.2008.05.046.
[53]  Duquesne, K.; Leburn, S.; Casiot, C.; Bruneel, O.; Personne, J.C.; Leblanc, M.; Elbaz-Poulichet, F.; Morin, G.; Bonnefoy, V. Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Appl. Environ. Microbiol. 2003, 69, 6165–6173, doi:10.1128/AEM.69.10.6165-6173.2003.
[54]  Chen, P.; Yan, L.; Wang, Q.; Li, H. Arsenic precipitation in the bioleaching of realgar using Acidithiobacillus ferrooxidans. J. Appl. Chem. 2013, 424253, doi:10.1155/2013/424253.
[55]  Barker, W.W.; Welch, S.A.; Chu, S.; Banfield, J.F. Experimental observations of the effects of bacteria on aluminosilicate weathering. Am. Mineral. 1998, 83, 1551–1563.
[56]  Welch, S.A.; Barker, W.W.; Banfield, J.F. Microbial extracellular polysaccharides and plagioclase dissolution. Geochim. Cosmochim. Acta 1999, 63, 1405–1419, doi:10.1016/S0016-7037(99)00031-9.
[57]  Sutton, J.A.; Corrick, J.D. Bacteria in Mining and Metallurgy: Leaching Selected Ores and Minerals; Experiments with ; Rept. Invest. RI 5839; Bureau of Mines, U.S. Department of the Interior: Washington, DC, 1964.
[58]  Ehrlich, H.L. Bacterial action on orpiment. Econ. Geol. 1963, 58, 991–994, doi:10.2113/gsecongeo.58.6.991.
[59]  Corkhill, C.L.; Wincott, P.L.; Lloyd, J.R.; Vaughan, D.J. The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans. Geochim. Cosmochim. Acta 2006, 70, 3593–3612, doi:10.1016/j.gca.2006.04.034.
[60]  Hallberg, K.B.; Johnson, D.B. Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbiol. 2001, 49, 37–84, doi:10.1016/S0065-2164(01)49009-5.
[61]  Baker, B.J.; Banfield, J.F. Microbioal communities in acid mine drainage. FEMS Microbiol. Ecol. 2003, 44, 139–152, doi:10.1016/S0168-6496(03)00028-X.
[62]  González-Pastor, J.E.; Mirete, S. Novel metal resistance genes from microorganisms: A functional metagenomic approach. Methods Mol. Biol. 2010, 668, 273–285, doi:10.1007/978-1-60761-823-2_19.
[63]  Yelton, A.P.; Comolli, L.R.; Justice, N.B.; Castelle, C.; Denef, V.J.; Thomas, B.C.; Banfield, J.F. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. BMC Genomics 2013, 14, 485, doi:10.1186/1471-2164-14-485.
[64]  Drewniak, L.; Sklodowska, A. Arsenic-transforming microbes and their role in biomining processes. Environ. Sci. Pollut. Res. 2013, doi:10.1007/s11356-012-1449-0.
[65]  Islam, A.B.M.R.; Maity, J.P.; Bundschuh, J.; Chen, C.-Y.; Bhowmik, B.K.; Tazaki, K. Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment. J. Hazard. Mater. 2012, doi:10.1016/j.jhazmat.2012.07.022.
[66]  Corkhill, C.L.; Vaughan, D.J. Arsenopyrite oxidation—A review. Appl. Geochem. 2009, 24, 2342–2361, doi:10.1016/j.apgeochem.2009.09.008.
[67]  Henao, D.M.O.; Godoy, M.A.M. Jarosite pseudomorph formation from arsenopyrite oxidation using Acidithiobacillus ferrooxidans. Hydrometallurgy 2010, 104, 162–168, doi:10.1016/j.hydromet.2010.05.012.
[68]  Drewniak, L.; Matlakowska, R.; Rewerski, B.; Sklodowska, A. Arsenic release from gold mine rocks mediated by the activity of indigenous bacteria. Hydrometallurgy 2010, 104, 437–442, doi:10.1016/j.hydromet.2010.02.025.
[69]  Drahota, P.; Falteisek, L.; Redlich, A.; Rohovec, J.; Matou?ek, T.; ?epi?ka, I. Microbial effects on the release and attenuation of arsenic in the shallow subsurface of a natural geochemical anomaly. Environ. Pollut. 2013, 180, 84–91, doi:10.1016/j.envpol.2013.05.010.
[70]  Cummings, D.E.; Caccavo, F., Jr.; Fendorf, S.; Resonzweigh, R.F. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ. Sci. Technol. 1999, 33, 723–729, doi:10.1021/es980541c.
[71]  Papassiopi, N.; Vaxevanidou, K.; Paspaliaris, I. Investigating the use of iron reducing bacteria for the removal of arsenic from contaminated soils. Water Air Soil Pollut. 2003, 3, 81–90.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413