全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2013 

Microbial Reducibility of Fe(III) Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

DOI: 10.3390/min3040395

Keywords: iron reducing bacteria, iron ore caves, biospeleogenesis, Shewanella oneidensis MR-1, canga, iron ore, banded iron formations

Full-Text   Cite this paper   Add to My Lib

Abstract:

The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs) that form within Fe(III)-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III) (hydr)oxides by Fe(III) reducing bacteria (FeRB) could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III) deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III)-rich duricrust, contained poorly crystalline Fe(III) phases that were more susceptible to reduction than the Fe(III) (predominantly hematite) associated with banded iron formation (BIF), iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III) reduction, presumably by shuttling electrons from S. oneidensis to Fe(III) phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III) reduction by S. oneidensis, with more bioreduction of Fe(III) associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III) reducing bacteria (FeRB), and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III) phases of the surrounding rock.

References

[1]  Simmons, G.C. Canga caves in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Bull. Nat. Speleol. Soc. 1963, 25, 66–72.
[2]  Auler, A.; Farrant, A.R. A brief introduction to karst and caves in Brazil. Proc. Univ. Bristol Spelaeol. Soc. 1996, 20, 187–200.
[3]  Bekker, A.; Slack, J.F.; Planavsky, N.; Krape?, B.; Hoffmann, A.; Konhauser, K.O.; Rouxel, O.J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 2010, 105, 467–508, doi:10.2113/gsecongeo.105.3.467.
[4]  Morris, R.C.; Thornber, M.R.; Ewer, W.E. Deep-seated iron ores from banded-iron formation. Nature 1980, 288, 250–252, doi:10.1038/288250a0.
[5]  Morris, R.C. A textural and mineralogical study of the relationship between iron ore to banded-iron formation in the Hamersley iron province of Western Australia. Econ. Geol. 1980, 75, 184–209, doi:10.2113/gsecongeo.75.2.184.
[6]  Varaj?o, C.A.C.; Bruand, A.; Ramanaidou, E.R.; Gilkes, R.J. Microporosity of BIF hosted hematite ore, Iron Quadrangle, Brazil. An. Acad. Bras. Ciênc. 2002, 74, 113–126, doi:10.1590/S0001-37652002000100008.
[7]  Harder, E.C. The “itabirite” iron ores of Brazil. Econ. Geol. 1914, 9, 101–111, doi:10.2113/gsecongeo.9.2.101.
[8]  Schuster, D.L.; Farley, K.A.; Vasconcelos, P.M.; Balco, G.; Monteiro, H.S.; Waltenberg, K.; Stone, J.O. Cosmogenic 3He in hematite and goethite from Brazilian “canga” duricrust demonstrates the extreme stability of these surfaces. Earth Planet. Sci. Lett. 2012, 329–330, 41–50, doi:10.1016/j.epsl.2012.02.017.
[9]  Rosière, C.A.; Siemes, H.; Quade, H.; Brokmeier, H.-G.; Jansen, E.M. Microstructures, textures, and deformation mechanisms in hematite. J. Struct. Geol. 2001, 23, 1429–1440, doi:10.1016/S0191-8141(01)00009-8.
[10]  Guedes, S.C.; Rosière, C.A.; Barley, M.E. The association of carbonate alteration of banded iron formation with the Carajás high-grade hematite deposits. Appl. Earth Sci. 2003, 112, 26–30, doi:10.1179/037174503225011234.
[11]  Salgado, A.A.R.; Braucher, R.; Colin, F.; Nalini, H.A.; Varaj?o, A.F.D.C.; Varaj?o, C.A.C. Denudation rates of the Quadrilátero Ferrífero (Minas Gerais, Brazil): Preliminary results from measurements of solute fluxes in rivers and in situ-produced cosmogenic 10Be. J. Geochem. Explor. 2006, 88, 313–317, doi:10.1016/j.gexplo.2005.08.064.
[12]  Salgado, A.A.R.; Braucher, R.; Varaj?o, A.C.; Colin, F.; Varaj?o, A.F.D.C.; Nalini, H.A. Relief evolution of the Quadrilátero Ferrífero (Minas Gerais, Brazil) by means of (10Be) cosmogenic nuclei. Z. Geomorphol. 2008, 52, 317–323, doi:10.1127/0372-8854/2008/0052-0317.
[13]  Parker, C.W.; Auler, A.S.; Senko, J.M.; Sasowsky, I.D.; Piló, L.B.; Smith, M.; Johnston, M.; Barton, H.A. Microbial Iron Cycling and Biospeleogenesis: Cave Development in the Carajás Formation, Brazil. In Proceedings of the 16th International Congress of Speleology, Brno, Czech Republic, 21–27 July 2013; Filippi, M., Bosák, P., Eds.; Czech Speleological Society: Praha, Czech Republic, 2013; pp. 442–446.
[14]  Lovley, D.R.; Holmes, D.E.; Nevin, K.P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 2004, 49, 219–286, doi:10.1016/S0065-2911(04)49005-5.
[15]  Weber, K.A.; Achenbach, L.A.; Coates, J.D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 2006, 4, 752–764, doi:10.1038/nrmicro1490.
[16]  McFarlane, M.J.; Twidale, C.R. Karstic features associated with tropical weathering profiles. Z. Geomorphol. Suppl. 1987, 64, 73–95.
[17]  Barton, H.A.; Luiszer, F. Microbial metabolic structure in a sulfidic cave hot spring: Potential mechanisms of biospeleogenesis. J. Cave Karst Stud. 2005, 67, 28–38.
[18]  Engel, A.S. Microbial Diversity of Cave Ecosystems. In Geomicrobiology: Molecular and Environmental Perspectives; Barton, L.L., Mandl, M., Loy, A., Eds.; Springer: New York, NY, USA, 2010; pp. 219–238.
[19]  Barton, H.A. Biospeleogenesis. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: San Diego, CA, USA, 2013; Volume 6, pp. 39–55.
[20]  Spier, C.A.; Barros de Oliveira, S.M.; Rosière, C.A.; Ardisson, J.D. Mineralogy and trace-element geochemistry of the high-grade iron ores of the águas Claras Mine and comparison with the Cap?o Xavier and Tamaduá iron ore deposits, Quadrilátero Ferrífero, Brazil. Miner. Deposita 2008, 43, 229–254, doi:10.1007/s00126-007-0157-z.
[21]  Lovley, D.R.; Phillips, E.J.P. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl. Environ. Microbiol. 1987, 53, 1536–1540.
[22]  Downs, R.T.; Hall-Wallace, M. The American Mineralogist crystal structure database. Am. Mineral. 2003, 88, 247–250.
[23]  Burgos, W.D.; Royer, R.A.; Fang, Y.; Yeh, G.-T.; Fisher, A.S.; Jeon, B.-H.; Dempsey, B.A. Theoretical and experimental considerations related to reaction-based modeling: A case study using iron(III) oxide bioreduction. Geomicrobiol. J. 2002, 19, 253–287, doi:10.1080/01490450252864299.
[24]  Neal, A.L.; Rosso, K.M.; Geesy, G.G.; Gorby, Y.A.; Little, B.J. Surface structure effects on direct reduction of iron oxides by Shewanella oneidensis. Geochim. Cosmochim. Acta. 2003, 67, 4489–4503, doi:10.1016/S0016-7037(03)00386-7.
[25]  Bose, S.; Hochella, M.F., Jr.; Gorby, Y.A.; Kennedy, D.W.; McCready, D.E.; Madden, A.S.; Lower, B.H. Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim. Cosmochim. Acta. 2009, 73, 962–976, doi:10.1016/j.gca.2008.11.031.
[26]  Zachara, J.M.; Fredrickson, J.K.; Li, S.-M.; Kennedy, D.W.; Smith, S.C.; Gassman, P.L. Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. Am. Mineral. 1998, 83, 1426–1443.
[27]  Royer, R.A.; Burgos, W.D.; Fisher, A.S.; Unz, R.F.; Dempsey, B.A. Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation. Environ. Sci. Technol. 2002, 36, 1939–1946, doi:10.1021/es011139s.
[28]  Royer, R.A.; Burgos, W.D.; Fisher, A.S.; Jeon, B.H.; Unz, R.F.; Dempsey, B.A. Enhancement of hematite bioreduction by natural organic matter. Environ. Sci. Technol. 2002, 36, 2897–2904, doi:10.1021/es015735y.
[29]  Royer, R.A.; Dempsey, B.A.; Jeon, B.-H.; Burgos, W.D. Inhibition of biological reductive dissolution of hematite by ferrous iron. Environ. Sci. Technol. 2004, 38, 187–193, doi:10.1021/es026466u.
[30]  Stone, J.J.; Royer, R.A.; Dempsey, B.A.; Burgos, W.D. Effect of natural organic matter on zinc inhibition of hematite bioreduction by Shewanella putrefaciens CN32. Environ. Sci. Technol. 2007, 41, 5284–5290, doi:10.1021/es062802l.
[31]  Luan, F.; Burgos, W.D.; Xie, L.; Zhou, Q. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN3. Environ. Sci. Technol. 2010, 44, 184–190, doi:10.1021/es901585z.
[32]  Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436, doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
[33]  Zinn, Y.L.; Resck, D.V.S.; da Silva, J.E. Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil. For. Ecol. Manage. 2002, 166, 285–294, doi:10.1016/S0378-1127(01)00682-X.
[34]  Lovley, D.R.; Coates, J.D.; Blunt-Harris, E.L.; Phillips, E.J.P.; Woodward, J.C. Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, 445–448, doi:10.1038/382445a0.
[35]  Fredrickson, J.K.; Zachara, J.M.; Kennedy, D.W.; Dong, H.; Onstott, T.C.; Hinman, N.W.; Li, S. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmoshim. Acta. 1998, 62, 3239–3257, doi:10.1016/S0016-7037(98)00243-9.
[36]  Scott, D.T.; McKnight, D.M.; Blunt-Harris, E.L.; Kolesar, S.E.; Lovley, D.R. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 1998, 32, 2984–2989, doi:10.1021/es980272q.
[37]  Zhang, C.; Liu, C.; Shi, Z. Micromodel investigation of transport effects on the kinetics of reductive dissolution of hematite. Environ. Sci. Technol. 2013, 47, 4131–4139, doi:10.1021/es304006w.
[38]  Lovley, D.R.; Phillips, E.J.P. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl. Environ. Microbiol. 1986, 52, 751–757.
[39]  Lovley, D.R.; Phillips, E.J.P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 1988, 54, 1472–1480.
[40]  Dominik, P.; Kaupenjohann, M. Reduction of Fe(III) (hydr)oxides with known thermodynamic stability by Geobacter metallireducens. Geomicrobiol. J. 2004, 21, 287–295, doi:10.1080/01490450490438784.
[41]  Roden, E.E.; Zachara, J.M. Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth. Environ. Sci. Technol. 1996, 30, 1618–1628, doi:10.1021/es9506216.
[42]  Kukkadapu, R.K.; Zachara, J.M.; Smith, S.C.; Fredrickson, J.K.; Liu, C. Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments. Geochim. Cosmochim. Acta. 2001, 65, 2913–2924, doi:10.1016/S0016-7037(01)00656-1.
[43]  Dominik, P.; Pohl, H.N.; Bousserrhine, N.; Berthelin, J.; Kauperjohann, M. Limitations to the reductive dissolution of Al-substituted goethites by Clostridium butyricum. Soil Biol. Biochem. 2002, 34, 1147–1155, doi:10.1016/S0038-0717(02)00050-0.
[44]  Ekstrom, E.B.; Learman, D.R.; Madden, A.S.; Hansel, C.M. Contrasting effects of Al substitutions on microbial reduction of Fe(III) (hydr)oxides. Geochim. Cosmochim. Acta. 2010, 74, 7086–7099, doi:10.1016/j.gca.2010.09.008.
[45]  Urrutia, M.M.; Roden, E.E.; Zachara, J.M. Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides. Environ. Sci. Technol. 1999, 33, 4022–4028, doi:10.1021/es990447b.
[46]  Sasowsky, I.D.; Foos, A.; Miller, C.M. Lithic controls on the removal of iron and remediation of acidic mine drainage. Water Res. 2000, 34, 2742–2746, doi:10.1016/S0043-1354(00)00019-1.
[47]  Piló, L.B.; Auler, A. Geoespeleologia das Cavernas em Rochas Ferríferas da Regi?o de Carajás, Pa. Sociedade Brasileira de Espeleologia (in Portuguese). In Proceedings of the Anais do 30th Congresso Brasileiro de Espeleologia, Montes Claros, MG, Brazil, 9–12 July 2009.
[48]  Minyard, M.L.; Burgos, W.D. Hydrologic flow controls on biologic iron(III) reduction in natural sediments. Environ. Sci. Technol. 2007, 41, 1218–1224, doi:10.1021/es0619657.
[49]  Roden, E.E.; Urrutia, M.M. Ferrous iron removal promotes microbial reduction of crystalline iron(III) oxides. Environ. Sci. Technnol. 1999, 33, 1847–1853, doi:10.1021/es9809859.
[50]  Gonzalez-Gil, G.; Amonette, J.E.; Romine, M.F.; Gorby, Y.A.; Geesy, G.G. Bioreduction of natural specular hematite under flow conditions. Geochim. Cosmochim. Acta. 2005, 69, 1145–1155, doi:10.1016/j.gca.2004.08.014.
[51]  Roden, E.E.; Urrutia, M.M.; Mann, C.J. Bacterial reductive dissolution of crystalline Fe(III) oxide in continuous-flow column reactors. Appl. Environ. Microbiol. 2000, 66, 1062–1065, doi:10.1128/AEM.66.3.1062-1065.2000.
[52]  Stookey, L.L. Ferrozine—A new spectrophotometric reagent for iron. Anal. Chem. 1970, 42, 779–781, doi:10.1021/ac60289a016.
[53]  Tanner, R.S. Cultivation of Bacteria and Fungi. In Manual of Environmental Microbiology; Hurst, C.J., Knudsen, G.R., McInerney, M.J., Stetzenbach, L.D., Walter, M.V., Eds.; ASM Press: Washington, DC, USA, 1997; pp. 52–60.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133