全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2013 

Geology and Mineralogy of Uranium Deposits from Mount Isa, Australia: Implications for Albitite Uranium Deposit Models

DOI: 10.3390/min3030258

Keywords: uranium, high field strength elements, albitite-type, Valhalla, Bikini, Skal, Mount Isa, Australia, brittle-ductile transition

Full-Text   Cite this paper   Add to My Lib

Abstract:

New geological, bulk chemical and mineralogical (QEMSCAN and FEG-EPMA) data are presented for albitite-type uranium deposits of the Mount Isa region of Queensland, Australia. Early albitisation of interbedded metabasalt and metasiltstone predated intense deformation along D 2 high strain (mylonite) zones. The early sodic alteration paragenetic stage includes albite, riebeckite, aegirine, apatite, zircon and magnetite. This paragenetic stage was overprinted by potassic microveins, containing K-feldspar, biotite, coffinite, brannerite, rare uraninite, ilmenite and rutile. An unusual U-Zr phase has also been identified which exhibits continuous solid solution with a uranium silicate possibly coffinite or nenadkevite. Calcite, epidote and sulphide veinlets represent the latest stage of mineralisation. This transition from ductile deformation and sodic alteration to vein-controlled uranium is mirrored in other examples of the deposit type. The association of uranium with F-rich minerals and a suite of high field strength elements; phosphorous and zirconium is interpreted to be indicative of a magmatic rather than metamorphic or basinal fluid source. No large intrusions of appropriate age outcrop near the deposits; but we suggest a relationship with B- and Be-rich pegmatites and quartz-tourmaline veins.

References

[1]  Wilde, A.R. Towards a model for albitite-type uranium. Minerals 2013, 3, 36–48, doi:10.3390/min3010036.
[2]  Goldney, L.H.; Canning, R.G.; Gooden, J.E.A. Extraction Investigations with Some Australian Uranium Ores. AAEC Symposium on Uranium Processing; Australian Atomic Energy Commission: Adelaide, Australia, 1972; pp. 1–18.
[3]  Polito, P.; Kyser, K.; Stanley, C. The Proterozoic, albitite-hosted, Valhalla uranium deposit, Queensland, Australia: A description of the alteration assemblage associated with uranium mineralisation in diamond drill hole V39. Miner. Depos. 2007, 44, 11–40, doi:10.1007/s00126-007-0162-2.
[4]  Gregory, M.; Wilde, A.; Jones, P. Uranium deposits of the Mount Isa region and their relationship to deformation metamorphism and copper deposition. Econ. Geol. 2005, 100, 537–546, doi:10.2113/gsecongeo.100.3.537.
[5]  Wyborn, L. The Petrology and Geochemistry of Alteration Assemblages in the Eastern Creek Volcanics, as a Guide to Copper and Uranium Mobility Associated with Regional Metamorphism and Deformation, Mt Isa, Queensland. In Geochemistry and Mineralization of Proterozoic Volcanic Suites. GS Special Publication No. 33; Pharaoh, T.C., Beckinsale, R.D., Rickard, D., Eds.; Institute of Mining and Metallurgy: London, UK, 1987; pp. 425–434.
[6]  Bain, J.H.C.; Heinrich, C.A.; Henderson, G.A.M. Stratigraphy, Structure and Metasomatism of the Haslingdon Group, East Moondarra Area, Mt Isa: A Deformed and Mineralised Proterozoic Multistage Rift-sag Sequence. In Detailed Studies of the Mount Isa Inlier. Australian Geological Survey Organisation Bulletin 243; Stewart, A.J., Blake, D.H., Eds.; Australian Geological Survey Organisation: Canberra, Australia, 1992; pp. 125–136.
[7]  Perkins, C.; Heinrich, C.; Wyborn, L. 40Ar/39Ar geochronology of copper mineralization and regional alteration, Mount Isa, Australia. Econ. Geol. 1999, 94, 23–36, doi:10.2113/gsecongeo.94.1.23.
[8]  Page, R. Chronology of magmatism, skarn formation, and uranium mineralization, Mary Kathleen, Queensland, Australia. Econ. Geol. 1983, 78, 838–853, doi:10.2113/gsecongeo.78.5.838.
[9]  McGloin, M. U-Pb Shrimp geochronology of the Sybella microgranite: Is there a link to U-Ree prospects at Mount Isa? AIG News 2012, 110, 29–30.
[10]  Gregory, M.J.; Schaefer, B.F.; Keays, R.R.; Wilde, A.R. Rhenium-Osmium systematics of the Mount Isa copper orebody and the Eastern Creek volcanics, Queensland: Implications for ore genesis. Miner. Depos. 2008, 43, 553–573, doi:10.1007/s00126-008-0182-6.
[11]  Connors, K.A.; Page, R.W. Relationship between magmatism, metamorphism and deformation in the western Mount Isa Inlier, Australia. Precambrian Res. 1995, 71, 131–153, doi:10.1016/0301-9268(94)00059-Z.
[12]  Huang, W.; Rubenach, M. Structural controls on syntectonic metasomatic tremolite and tremolite-plagioclase pods in the Molanite Valley, Mt Isa, Australia. J. Struct. Geol. 1995, 17, 83–94, doi:10.1016/0191-8141(94)E0021-P.
[13]  Abu Sharib, A.S.; Sanislav, I.V. Polymetamorphism accompanied switching in horizontal shortening during Isan Orogeny: Example from the Eastern Fold Belt, Mount Isa Inlier, Australia. Tectonophys 2012, 587, 146–167, doi:10.1016/j.tecto.2012.06.051.
[14]  Wilde, A.R. Mount Isa copper orebodies: Improving predictive discovery. Aust. J. Earth Sci. 2011, 58, 937–951, doi:10.1080/08120099.2011.571285.
[15]  Duncan, R.; Wilde, A.R.; Bassano, K.; Maas, R. Geochronological constraints on tourmaline formation in the Western Fold Belt of the Mount Isa Inlier, Australia: Evidence for large-scale metamorphism at 1.57 Ga? Precambrian Res. 2006, 146, 120–137, doi:10.1016/j.precamres.2006.01.010.
[16]  Hannan, K.; Golding, S.D.; Herbert, H.K.; Krouse, H.R. Contrasting alteration assemblages in metabasites from Mount Isa, Queensland: Implications for copper ore genesis. Econ. Geol. 1993, 88, 1135–1175, doi:10.2113/gsecongeo.88.5.1135.
[17]  Heinrich, C.A.; Bain, J.H.C.; Mernagh, T.P.; Wyborn, L.A.I.; Andrew, A.S.; Waring, C.L. Fluid and mass transfer during metabasalt alteration and copper mineralization. Econ. Geol. 1995, 90, 705–730, doi:10.2113/gsecongeo.90.4.705.
[18]  Oliver, N.H.S. Appraisal of Structural Geology and Controls on Mineralization in the Valhalla Region, 2010, 30,. Unpublished Report to Summit Resources, Holcombe Coughlin Oliver Consultants.
[19]  Oliver, N.H.S. Appraisal of Structural Geology and Controls on Mineralization in the Valhalla Region (Part 2), 2010, 30,. Unpublished Report to Summit Resources, Holcombe Coughlin Oliver Consultants.
[20]  Oliver, N.H.S. Prospectivity, Structure and Geochemistry in the Valhalla District, 2010, 19,. Unpublished Report to Summit Resources, Holcombe Coughlin Oliver Consultants.
[21]  Werth, C. Petrography and Geochemistry of the Duke Batman Uranium Deposit in Northwestern Queensland, Australia. Master’s Thesis, RWTH Aachen University, Aachen, Germany, 10 September 2012.
[22]  QEMSCAN Analysis Valhalla Uranium Thin Sections, 2009. Unpublished AMDEL Report N3437QS09.
[23]  De Nooy, D.; Hodgson, W. Mineralogical Investigation of Twenty Polished Thin Sections Using QEMSCAN and SEM-EDS Methods; 2010. Job NO: S0591; SGS Report to Summit Resources.
[24]  Hodgson, W.; de Nooy, D.; Lonsdale, G. Mineralogical Investigation of Ten Polished Thin Sections Using QEMSCAN and SEM-EDS Methods; 2009. SGS Report to Summit Resources.
[25]  Armstrong, J.T. CITZAF: A package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin films, and particles. Microbeam Anal. 1995, 4, 177–200.
[26]  Harrowfield, I.R.; MacRae, C.M.; Wilson, N.C. Chemical Imaging in Electron Microprobes. In Proceedings of the 27th Microbeam Analysis Society Annual MAS Meeting, New York, NY, USA, 1993; pp. 547–548.
[27]  Wood, D.A.; Joron, J.L.; Treuil, M.; Norry, M.; Tarney, J. Elemental and Sr isotope variations in Basic Lavas from Iceland and the surrounding ocean floor. Contrib. Miner. Petrol. 1979, 70, 319–339, doi:10.1007/BF00375360.
[28]  Lumpkin, G.R.; Leung, S.H.F.; Colella, M. Position, Geochemical Alteration, and Alpha-Decay Damage Effects of Natural Brannerite. In Proceedings of 23th International Symposium on Scientific Basis for Nuclear Waste Management, Boston, MA, USA, 29 November–2 December 1999; pp. 359–365.
[29]  Polikarpova, V.A. Nenadkevite—A new silicate of uranium. J. Nucl. Energy 1957, 4, 262–265.
[30]  Alexandre, P. Mineralogy and geochemistry of the sodium metasomatism-related uranium occurrence of Aricheng South, Guyana. Miner. Depos. 2009, 45, 351–367, doi:10.1007/s00126-010-0278-7.
[31]  Cinelu, S.; Cuney, M. Sodic metasomatism and U–Zr mineralization: A model based on the Kurupung batholith (Guyana). Goldschm. Conf. Abstr. 2006, 70, A103.
[32]  Omel’yanenko, B.I.; Mineyeva, I.G. Pre- and Syn-Ore vertical zonation in Precambrian uraniferous sodic metasomatites. Int. Geol. Rev. 1982, 24, 422–430, doi:10.1080/00206818209452425.
[33]  Helean, K.B.; Burakov, B.E.; Anderson, E.B.; Strykanova, E.E.; Ushakov, S.V.; Ewing, R.C. Mineralogical and microtextural characterization of “gel-zircon” from the Manibay uranium mine, Kazakhstan. Mat. Res. Soc. Symp. Proc. 1997, 465, 1219–1226.
[34]  Zhukova, V.Y. Mineralogy and Primary Zoning of Hydrothermal Metasomatic Uranium Deposits in Precambrian Iron Formations. Albitized Uranium Deposits: Six Articles Translated from Russian Literature; Avrashov, A., Abou-Zied, S., Kerns, G., Eds.; U.S. Department of Energy: Washington, DC, USA, 1980; pp. 91–112.
[35]  Cuney, M.; Emetz, A.; Mercadier, J.; Mykchaylov, V.; Shunko, V.; Yuslenko, A. Uranium deposits associated with Na-metasomatism from central Ukraine: A review of some of the major deposits and genetic constraints. Ore Geol. Rev. 2013, 44, 82–106.
[36]  Sheard, E.; Williams-Jones, A.; Heiligmann, M.; Pederson, C.; Trueman, D. Controls on the concentration of zirconium, niobium and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Econ. Geol. 2012, 107, 81–104, doi:10.2113/econgeo.107.1.81.
[37]  Guimaraes, D. The Zr Ore deposits of the Pocos de Caldas Plateau, Brazil and Zr chemistry. Bol. Inst. Tecn. Ind. Minas Gerais 1948, 6, 1–40.
[38]  Kuschke, O.; Tonking, M. Geology and mining operations at Palabora Mining Company Ltd, Phalaborwa, NE Transvaal. J. South Afr. Inst. Min. Met. 1971, 72, 12–22.
[39]  Aja, S.U.; Wood, S.A.; Williams-Jones, A.E. The aqueous geochemistry of Zr and the solubility of some Zr-bearing minerals. Appl. Geochem. 1995, 10, 603–620, doi:10.1016/0883-2927(95)00026-7.
[40]  Migdisov, A. The solubility of Zr in F-bearing hydrothermal solutions. Geochim. Cosmochim. Acta 2009, 73, A879, doi:10.1016/j.gca.2009.08.023.
[41]  Chambefort, I.; Kamenetsky, V.; McPhie, J.; Bath, A.; Agangi, A.; Allen, S.R.; Ehrig, K.; Green, N. The Olympic Dam Cu-Au-U Deposit, South Australia: Was Fluorine a Key in Forming this Giant? In Proceedings of the Tenth Biennial SGA Meeting, Townsville, Austrlia, 2009; pp. 207–209.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413