全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2013 

Sustainability of Rare Earths—An Overview of the State of Knowledge

DOI: 10.3390/min3030304

Keywords: rare earths, sustainability, social, environmental, energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rare Earths (RE) have been the focus of much attention in recent years as a consequence of a number of converging factors, prominent among which are: centralization of supply (in China), unique applications in high-end technologies particularly in the low-carbon energy industry, and global demand outstripping availability. Despite this focus, RE supply chain sustainability has not been examined in depth or in any systematic manner. This paper provides an initial review of RE sustainability considerations at present, including current initiatives to understand the research and development needs. The analysis highlights a broad range of areas needing consolidation with future research and calls for collaboration between industry and academia to understand the sustainability considerations of these critical elements in more depth.

References

[1]  Graedel, T.E. On the future availability of the energy metals. Annu. Rev. Mater. Res. 2011, 41, 323–335, doi:10.1146/annurev-matsci-062910-095759.
[2]  National Research Council. Minerals, Critical Minerals, and the U.S. Economy; National Academies Press: Washington, DC, USA, 2008.
[3]  Bauer, D.; Diamond, D.; Li, J.; Sandalow, D.; Telleen, P.; Wanner, B. U.S. Department of Energy Critical Materials Strategy; U.S. Department of Energy: Washington, DC, USA, 2010.
[4]  American Physical Society; The Materials Research Society. Energy Critical Elements: Securing Materials for Emerging Technologies: A Report by the APS Panel on Public Affairs & the Materials Research Society; American Physical Society: Washington, DC, USA, 2011.
[5]  Moss, R.L.; Tzimas, E.; Kara, H.; Willis, P.; Kooroshy, J. The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies. Energy Policy 2013, 55, 556–564, doi:10.1016/j.enpol.2012.12.053.
[6]  European Commission. Critical Raw Materials for the EU. In Report of the Ad-Hoc Working Group on Defining Critical Raw Materials; European Commission: Brussels, Belgium, 2010.
[7]  Japan Oil, Gas and Metals National Corporation Web Page. Rare Metals Stockpiling. Available online: http://www.jogmec.go.jp/english/stockpiling/stockpiling_015.html (accessed on 15 August 2013).
[8]  Cao, Z.G.; Li, Z.X.; Li, C.P.; Zhao, Y.Q.; Liu, Y. Current Issues and Policies on Energy Critical Element Sectors in China—A Global Perspective. In Proceedings of 2011 International Conference on Electrical and Control Engineering (ICECE); IEEE: New York, NY, USA, 2011.
[9]  Hurd, A.J.; Kelley, R.L.; Eggert, R.G.; Lee, M.-H. Energy-critical elements for sustainable development. MRS Bull. 2012, 37, 405–410, doi:10.1557/mrs.2012.54.
[10]  Corder, G.D.; McLellan, B.C.; Bangerter, P.J.; van Beers, D.; Green, S.R. Engineering-in sustainability through the application of SUSOP?. Chem. Eng. Res. Des. 2012, 90, 98–109, doi:10.1016/j.cherd.2011.08.001.
[11]  McLellan, B.; Zhang, Q.; Farzaneh, H.; Utama, N.A.; Ishihara, K.N. Resilience, sustainability and risk management: A focus on energy. Challenges 2012, 3, 153–182, doi:10.3390/challe3020153.
[12]  Borzone, G.; Raggio, R.; Ferro, R. Thermochemistry and reactivity of rare earth metals. Phys. Chem. Chem. Phys. 1999, 1, 1487–1500, doi:10.1039/a900312f.
[13]  Gupta, C.K.; Krishnamurthy, N. Extractive Metallurgy of Rare Earths; CRC Press: Boca Raton, FL, USA, 2005.
[14]  Liao, C.S.; Wu, S.; Cheng, F.X.; Wang, S.L.; Liu, Y.; Zhang, B.; Yan, C.H. Clean separation technologies of rare earth resources in China. J. Rare Earths 2013, 31, 331–336, doi:10.1016/S1002-0721(12)60281-6.
[15]  Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114, doi:10.1016/j.mineng.2012.10.017.
[16]  Hirai, T.; Komasawa, I. Separation of rare metals by solvent extraction employing reductive stripping technique. Miner. Process. Extr. Met. Rev. 1997, 17, 81–107, doi:10.1080/08827509708914143.
[17]  Zhang, Y.Q.; Li, J.N.; Huang, X.W.; Wang, C.M.; Zhu, Z.W.; Zhang, G.C. Synergistic extraction of rare earths by mixture of HDEHP and HEH/EHP in sulfuric acid medium. J. Rare Earths 2008, 26, 688–692, doi:10.1016/S1002-0721(08)60164-7.
[18]  Thakur, N.V. Separation of rare earths by solvent extraction. Miner. Process. Extr. Met. Rev. 2000, 21, 277–306, doi:10.1080/08827500008914171.
[19]  Zhu, L.Y.; Duan, W.H.; Xu, J.M.; Zhu, Y.J. Extraction of actinides and lanthanides by supercritical fluid. J. Eng. Gas Turbines Power 2011, 133, 052903:1–052903:8, doi:10.1115/1.4002354.
[20]  Duan, W.H.; Cao, P.J.; Zhu, Y.J. Extraction of rare earth elements from their oxides using organophosphorus reagent complexes with HNO3 and H2O in supercritical CO2. J. Rare Earths 2010, 28, 221–226, doi:10.1016/S1002-0721(09)60084-3.
[21]  Takahashi, Y.; Chatellier, X.; Hattori, K.H.; Kato, K.; Fortin, D. Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats. Chem. Geol. 2005, 219, 53–67.
[22]  Binnemans, K.; Jones, P.T.; Blanpain, B.; Gerven, T.V.; Yang, Y.X.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22, doi:10.1016/j.jclepro.2012.12.037.
[23]  Schüler, D.; Buchert, M.; Liu, D.-I.R.; Dittrich, D.-G.S.; Merz, D.-I.C. Study on Rare Earths and Their Recycling. In Final Report for The Greens/EFA Group in the European Parliament; ?ko-Institut e.V.: Freiburg, Germany, 2011.
[24]  Tanaka, M.; Oki, T.; Koyama, K.; Narita, H.; Oishi, T. Recycling of Rare Earths from Scrap. In Handbook on the Physics and Chemistry of Rare Earths; Bünzli, J.-C.G., Pecharsky, V.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2013. Chapter 255; pp. 159–211.
[25]  Xu, T.; Peng, H.Q. Formation cause, composition analysis and comprehensive utilization of rare earth solid wastes. J. Rare Earths 2009, 27, 1096–1102, doi:10.1016/S1002-0721(08)60394-4.
[26]  Gasser, M.S.; Aly, M.I. Separation and recovery of rare earth elements from spent nickel–metal-hydride batteries using synthetic adsorbent. Int. J. Miner. Process. 2013, 121, 31–38.
[27]  Resende, L.V.; Morais, C.A. Study of the recovery of rare earth elements from computer monitor scraps—Leaching experiments. Miner. Eng. 2010, 23, 277–280, doi:10.1016/j.mineng.2009.12.012.
[28]  Ishii, M.; Matsumiya, M.; Kawakami, S. Development of recycling process for rare earth magnets by electrodeposition using ionic liquids media. ECS Trans. 2013, 50, 549–560.
[29]  Xu, T.; Zhang, X.D.; Lin, Z.; Lü, B.Y.; Ma, C.M.; Gao, X.L. Recovery of rare earth and cobalt from Co-based magnetic scraps. J. Rare Earths 2010, 28, 485–488, doi:10.1016/S1002-0721(10)60355-9.
[30]  Vander Hoogerstraete, T.; Wellens, S.; Verachtert, K.; Binnemans, K. Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: Separations relevant to rare-earth magnet recycling. Green Chem. 2013, 15, 919–927.
[31]  Yang, F.; Kubota, F.; Baba, Y.; Kamiya, N.; Goto, M. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. J. Hazard. Mater. 2013, 254–255, 79–88.
[32]  Eliseeva, S.V.; Bunzli, J.-C.G. Rare earths: Jewels for functional materials of the future. New J. Chem. 2011, 35, 1165–1176, doi:10.1039/c0nj00969e.
[33]  Leonard, R.L.; Gray, S.K.; Albritton, S.D.; Brothers, L.N.; Cross, R.M.; Eastes, A.N.; Hah, H.Y.; James, H.S.; King, J.E.; Mishra, S.R.; et al. Rare earth doped downshifting glass ceramics for photovoltaic applications. J. Non Cryst. Solids 2013, 366, 1–5, doi:10.1016/j.jnoncrysol.2013.01.029.
[34]  Atyaoui, M.; Dimassi, W.; Atyaoui, A.; Elyagoubi, J.; Ouertani, R.; Ezzaouia, H. Improvement in photovoltaic properties of silicon solar cells with a doped porous silicon layer with rare earth (Ce, La) as antireflection coatings. J. Lumin. 2013, 141, 1–5, doi:10.1016/j.jlumin.2013.03.024.
[35]  Hoenderdaal, S.; Espinoza, L.T.; Marscheider-Weidemann, F.; Graus, W. Can a dysprosium shortage threaten green energy technologies? Energy 2013, 49, 344–355, doi:10.1016/j.energy.2012.10.043.
[36]  Bradshaw, A.M.; Hamacher, T. Nonregenerative natural resources in a sustainable system of energy supply. ChemSusChem 2012, 5, 550–562, doi:10.1002/cssc.201100563.
[37]  Antolini, E.; Perez, J. The use of rare earth-based materials in low-temperature fuel cells. Int. J. Hydrog. Energy 2011, 36, 15752–15765, doi:10.1016/j.ijhydene.2011.08.104.
[38]  Rahman, M.A. History of interior permanent magnet motors [History]. IEEE Ind. Appl. Mag. 2013, 19, 10–15, doi:10.1109/MIAS.2012.2221996.
[39]  Kiyota, K.; Sugimoto, H.; Chiba, A. Comparison of Energy Consumption of SRM and IPMSM in Automotive Driving Schedules. In Proceedings of the Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 853–860.
[40]  United States Geological Survey (USGS). Mineral Commodity Summaries 2013; USGS: Washington, DC, USA, 2013.
[41]  Khadijeh, R.E.S.; Elias, S.B.; Wood, A.K.; Reza, A.M. Rare earth elements distribution in marine sediments of Malaysia coasts. J. Rare Earths 2009, 27, 1066–1071, doi:10.1016/S1002-0721(08)60390-7.
[42]  Kato, Y.; Fujinaga, K.; Nakamura, K.; Takaya, Y.; Kitamura, K.; Ohta, J.; Toda, R.; Nakashima, T.; Iwamori, H. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat. Geosci. 2011, 4, 535–539, doi:10.1038/ngeo1185.
[43]  Xue, P.Z.; Lin, J.F. Discussion on the Rare Earth Resources and Its Development Potential of Inner Mongolia of China. In Proceedings of 2011 International Conference on Materials for Renewable Energy & Environment (ICMREE), Shanghai, China, 20–22 May 2011.
[44]  Arafura Resources Limited. Nolans Project Update; Arafura Resources Limited: Perth, Australia, 2012.
[45]  Hurst, C. China?s Rare Earth Elements Industry: What Can the West Learn?. DTIC Document; Institute for the Analysis of Global Security: Washington, DC, USA, 2010.
[46]  Yang, X.J.; Lin, A.J.; Li, X.-L.; Wu, Y.D.; Zhou, W.B.; Chen, Z.H. China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ. Dev. 2013, doi:10.1016/j.envdev.2013.03.006.
[47]  Tharumarajah, R.; Koltun, P. Cradle to Gate Assessment of Environmental Impact of Rare Earth Metals. In Proceedings of the 7th Australian Conference on Life Cycle Assessment, Melbourne, Australia, 9–10 March 2011; Australian Life Cycle Assessment Society: Melbourne, Australia, 2011.
[48]  Morf, L.S.; Gloor, R.; Haag, O.; Haupt, M.; Skutan, S.; Lorenzo, F.D.; B?ni, D. Precious metals and rare earth elements in municipal solid waste—Sources and fate in a Swiss incineration plant. Waste Manag. 2013, 33, 634–644.
[49]  Mayfield, D.B.; Lewis, A.S. Environmental Review of Coal Ash as a Resource for Rare Earth and Strategic Elements. In Proceedings of the 2013 World of Coal Ash (WOCA) Conference, Lexington, KY, USA, 22–25 April 2013; The University of Kentucky: Lexington, KY, USA, 2013.
[50]  McLellan, B.C.; Williams, R.P.; Lay, J.; van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011, 19, 1080–1090, doi:10.1016/j.jclepro.2011.02.010.
[51]  Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14, doi:10.1016/j.oregeorev.2012.12.001.
[52]  Kamei, T. Recent research of thorium molten-salt reactor from a sustainability viewpoint. Sustainability 2012, 4, 2399–2418, doi:10.3390/su4102399.
[53]  Forum for the Future Web Page. The Five Capitals. Available online: http://www.forumforthefuture.org/project/five-capitals/overview (accessed on 12 September 2011).
[54]  Ichihara, M.; Harding, A. Human rights, the environment and radioactive waste: A study of the Asian rare earth case in Malaysia. Rev. Eur. Community Int. Environ. Law 1995, 4, 1–14, doi:10.1111/j.1467-9388.1995.tb00190.x.
[55]  Akademi Sains Malaysia; Majlis Profesor Negara. Rare Earth Industries: Moving Malaysia’s Green Economy Forward; Akademi Sains Malaysia, Academy of Sciences, Malaysia: Kuala Lumpur, Malaysia, 2011.
[56]  Malaysian Academy of Science. Revitalizing the Rare Earths Mineral Programme in Peninsular Malaysia as a Strategic Industry; Akademi Sains Malaysia: Kuala Lumpur, Malaysia, 2013.
[57]  Gschneidner, K.A., Jr. The rare earth crisis—The supply/demand situation for 2010–2015. Mater. Matters 2012, 6. Article 2.
[58]  Gu, B. Mineral export restraints and sustainable development—Are rare earths testing the WTO’s loopholes? J. Int. Econ. Law 2011, 14, 765–805, doi:10.1093/jiel/jgr034.
[59]  Seredin, V.V.; Dai, S.F.; Sun, Y.Z.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11, doi:10.1016/j.apgeochem.2013.01.009.
[60]  Cui, Y.C.; Liu, J.H.; Ren, X.W.; Shi, X.F. Geochemistry of rare earth elements in cobalt-rich crusts from the Mid-Pacific M seamount. J. Rare Earths 2009, 27, 169–176, doi:10.1016/S1002-0721(08)60214-8.
[61]  Government of Japan. Basic Plan on Ocean Policy; Headquarters for Ocean Policy, Government of Japan: Tokyo, Japan, 2013.
[62]  Joshi, P.B.; Preda, D. A Low-Cost Rare Earth Elements Recovery Technology. In Proceedings of the 2013 World of Coal Ash (WOCA) Conference, Lexington, KY, USA, 22–25 April 2013.
[63]  Frosch, R.A.; Gallopoulos, N.E. Strategies for manufacturing. Sci. Am. 1989, 261, 144–152, doi:10.1038/scientificamerican0989-144.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413