全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2013 

Autolysis of Bacterial Cells Leads to Formation of Empty Sheaths by Leptothrix spp.

DOI: 10.3390/min3020247

Keywords: empty sheath, Leptothrix spp., iron-oxidizing bacteria, autolysis, L/D and DAPI dual staining

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aquatic, Fe-oxidizing bacteria Leptothrix spp. produce uniquely shaped extracellular sheaths composed of organic bacterial polymers encrusted with inorganic elements from its aquatic environments. At the initial stage of sheath formation, bacterial cells were aligned in the sheath, but later most sheaths became empty. Here, we studied the mechanism of sheath hollowing by examining an isolate of Leptothrix sp. strain OUMS1 cultured in either artificial medium or natural groundwater. After 3 days in the medium, most sheaths at the initial stage surrounded a line of live cells, while some cells in the line were dead regardless of their position in a sheath. In sheaths where cells and/or their remnants were barely distinguishable by differential interference contrast microscopy (DIC), a vital stain and a stain specific for nucleic acids occasionally revealed dead cells and/or nucleic acid remnants, while sheaths that lacked a positive response to these reagents looked transparent when viewed with DIC. In specimens cultured in the medium for 7 days, dead cells increased in number regardless of their position in the sheath. Almost the same phenomena occurred in specimens cultured in natural groundwater until day 7. Transmission electron microscopy (TEM) showed that cells degenerated, leading to autolysis of bacterial cells in the sheath. These observations led us to conclude that autolysis of bacterial cells could be a major cause of sheath hollowing.

References

[1]  Spring, S. The genera Leptothrix and Sphaerotilus. In The Prokaryotes, 3rd ed.; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Slackebrandt, E., Eds.; Springer Science: New York, NY, USA, 2006; Volume 5, pp. 758–777.
[2]  Takeda, M.; Makita, H.; Ohno, K.; Nakahara, Y.; Koizumi, J. Structural analysis of the sheath of a sheathed bacterium, Leptothrix cholodnii. Int. J. Biol. Macromol. 2005, 37, 92–98, doi:10.1016/j.ijbiomac.2005.09.002.
[3]  Van Veen, W.L.; Mulder, E.G.; Deinema, M.H. The Sphaerotilus-Leptothrix group of bacteria. Microbiol. Rev. 1978, 42, 329–356.
[4]  Furutani, M.; Suzuki, T.; Ishihara, H.; Hashimoto, H.; Kunoh, H.; Takada, J. Assemblage of bacterial saccharic microfibrils in sheath skeleton formed by cultured Leptothrix sp. strain OUMS1. J. Mar. Sci. Res. Dev. 2011, S5, doi:10.4172/2155-9910.S5-001.
[5]  Furutani, M.; Suzuki, T.; Ishihara, H.; Hashimoto, H.; Kunoh, H.; Takada, J. Initial assemblage of bacterial saccharic fibrils and element deposition to form an immature sheath in cultured Leptothrix sp. strain OUMS1. Minerals 2011, 1, 157–166, doi:10.3390/min1010157.
[6]  Sawayama, M.; Suzuki, T.; Hashimoto, H.; Kasai, T.; Furutani, M.; Miyata, N.; Kunoh, H.; Takada, J. Isolation of a Leptothrix strain, OUMS1, from ocherous deposits in groundwater. Curr. Microbiol. 2011, 63, 173–180.
[7]  Emerson, D.; Ghiorse, W.C. Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6. J. Bacteriol. 1993, 175, 7808–7818.
[8]  Takeda, M.; Kawasaki, Y.; Umezawa, T.; Shimura, S.; Hasegawa, M.; Koizumi, J. Patterns of sheath elongation, cell proliferation, and manganese (II) oxidation in Leptothrix cholodnii. Arch. Microbiol. 2012, 194, 667–673, doi:10.1007/s00203-012-0801-6.
[9]  Ghiorse, W.C. Biology of iron- and manganese-depositing bacteria. Annu. Rev. Microbiol. 1984, 38, 515–550, doi:10.1146/annurev.mi.38.100184.002503.
[10]  Emerson, D.; Revsbech, N.P. Investigation of an iron-oxidizing microbial mat community located near Aarthus, Denmark: Field studies. Appl. Environ. Microbiol. 1994, 60, 4022–4031.
[11]  Suzuki, T.; Hashimoto, H.; Ishihara, H.; Kasai, T.; Kunoh, H.; Takada, J. Structural and spatial associations between Fe, O, and C in the network structure of the Leptothrix ochracea sheath surface. Appl. Environ. Microbiol. 2011, 77, 7873–7875, doi:10.1128/AEM.06003-11.
[12]  Emerson, D.; Flemming, E.J.; McBeth, J.M. Iron-oxidizing bacteria: An environmental and genomic perspective. Annu. Rev. Microbiol. 2010, 64, 561–583, doi:10.1146/annurev.micro.112408.134208.
[13]  Ishihara, H.; Suzuki, T.; Hashimoto, H.; Kunoh, H.; Takada, J. Initial parallel arrangement of extracellular fibrils holds a key for sheath frame construction by Leptothrix sp. strain OUMS1. Minerals 2013, 3, 73–81, doi:10.3390/min3010073.
[14]  Suzuki, T.; Ishihara, H.; Furutani, M.; Shiraishi, T.; Kunoh, H.; Takada, J. A novel method for culturing of Leptothrix sp. strain OUMS1 in natural conditions. Minerals 2012, 2, 118–128, doi:10.3390/min2020118.
[15]  Madigan, M.T.M.; Martinko, J.M.; Dunlap, P.V.; Clark, D.P. Microbial ecosystem. In Brock Biology of Microorganisms, 12th ed.; Berriman, L., Carlson, G., Eds.; Pearson Benjamin Cummings: San Francisco, CA, USA, 2009; pp. 673–693.
[16]  Staats, M.; van Baarlen, P.; Schoutens, A.; van Kan, J.A.L. Functional analysis of NLP genes from Botrytis elliptica. Mol. Plant Pathol. 2007, 8, 209–214, doi:10.1111/j.1364-3703.2007.00382.x.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133