Tin-oxide and graphene (TG) composites were fabricated using the Electrostatic Spray Deposition (ESD) technique, and tested as anode materials for Li-ion batteries. The electrochemical performance of the as-deposited TG composites were compared to heat-treated TG composites along with pure tin-oxide films. The heat-treated composites exhibited superior specific capacity and energy density than both the as-deposited TG composites and tin oxide samples. At the 70th cycle, the specific capacities of the as-deposited and post heat-treated samples were 534 and 737 mA·h/g, respectively, and the corresponding energy densities of the as-deposited and heat-treated composites were 1240 and 1760 W·h/kg, respectively. This improvement in the electrochemical performance of the TG composite anodes as compared to the pure tin oxide samples is attributed to the synergy between tin oxide and graphene, which increases the electrical conductivity of tin oxide and helps alleviate volumetric changes in tin-oxide during cycling.
Courtney, I.A.; Dahn, J.R. Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass. J. Electrochem. Soc. 1997, 144, 2943–2948, doi:10.1149/1.1837941.
Li, M.; Lu, Q.; Nuli, Y.; Qian, X. Core-shell and hollow microspheres composed of Tin oxide nanocrystals as anode materials for lithium-ion batteries. Electrochem. Solid State Lett. 2007, 10, K33–K37, doi:10.1149/1.2745631.
[9]
Yu, Y.; Chen, C.H.; Shi, Y. A Tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv. Mater. 2007, 19, 993–997, doi:10.1002/adma.200601667.
[10]
Lee, K.T.; Jung, Y.S.; Oh, S.M. Synthesis of Tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 2003, 125, 5652–5653, doi:10.1021/ja0345524.
[11]
Ke, F.S.; Huang, L.; Wei, H.B.; Cai, J.S.; Fan, X.Y.; Yang, F.Z.; Sun, S.G. Fabrication and properties of macroporous tin–cobalt alloy film electrodes for lithium-ion batteries. J. Power Sources 2007, 170, 450–455, doi:10.1016/j.jpowsour.2007.04.019.
[12]
Machill, S.; Shodai, T.; Sakurai, Y.; Yamaki, J.I. Electrochemical characterization of Tin based composite oxides as negative electrodes for lithium batteries. J. Power Sources 1998, 73, 216–223, doi:10.1016/S0378-7753(97)02810-3.
[13]
Paek, S.M.; Yoo, E.J.; Honma, I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2009, 9, 72–75, doi:10.1021/nl802484w.
Wang, D.; Kou, R.; Choi, D.; Yang, Z.; Nie, Z.; Li, J.; Saraf, L.V.; Hu, D.; Zhang, J.; Graff, G.L.; et al. Ternary self-assembly of ordered metal oxide?graphene nanocomposites for electrochemical energy storage. ACS Nano 2010, 4, 1587–1595, doi:10.1021/nn901819n.
[16]
Wang, G.; Shen, X.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 2009, 47, 2049–2053, doi:10.1016/j.carbon.2009.03.053.
[17]
Chen, S.Q.; Chen, P.; Wu, M.H.; Pan, D.Y.; Wang, Y. Graphene supported Sn–Sb@carbon core-shell particles as a superior anode for lithium ion batteries. Electrochem. Commun. 2010, 12, 1302–1306, doi:10.1016/j.elecom.2010.07.005.
[18]
Kim, H.; Kim, S.W.; Park, Y.U.; Gwon, H.; Seo, D.H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813–821, doi:10.1007/s12274-010-0050-4.