全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2013 

Fabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries

DOI: 10.3390/nano3040606

Keywords: tin oxide, graphene, composites, lithium ion battery, anodes

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tin-oxide and graphene (TG) composites were fabricated using the Electrostatic Spray Deposition (ESD) technique, and tested as anode materials for Li-ion batteries. The electrochemical performance of the as-deposited TG composites were compared to heat-treated TG composites along with pure tin-oxide films. The heat-treated composites exhibited superior specific capacity and energy density than both the as-deposited TG composites and tin oxide samples. At the 70th cycle, the specific capacities of the as-deposited and post heat-treated samples were 534 and 737 mA·h/g, respectively, and the corresponding energy densities of the as-deposited and heat-treated composites were 1240 and 1760 W·h/kg, respectively. This improvement in the electrochemical performance of the TG composite anodes as compared to the pure tin oxide samples is attributed to the synergy between tin oxide and graphene, which increases the electrical conductivity of tin oxide and helps alleviate volumetric changes in tin-oxide during cycling.

References

[1]  Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 1997, 276, 1395–1397, doi:10.1126/science.276.5317.1395.
[2]  Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 2005, 4, 805–815, doi:10.1038/nmat1513.
[3]  Lou, X.W.; Wang, Y.; Yuan, C.; Lee, J.Y.; Archer, L.A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329, doi:10.1002/adma.200600733.
[4]  Chan, C.K.; Zhang, X.F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309, doi:10.1021/nl0727157.
[5]  Brousse, T.; Retoux, R.; Herterich, U.; Schleich, D.M. Thin-film crystalline SnO2-lithium electrodes. J. Electrochem. Soc. 1998, 145, 1–4, doi:10.1149/1.1838201.
[6]  Courtney, I.A.; Dahn, J.R. Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass. J. Electrochem. Soc. 1997, 144, 2943–2948, doi:10.1149/1.1837941.
[7]  Wang, Y.; Zeng, H.C.; Lee, J.Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 2006, 18, 645–649, doi:10.1002/adma.200501883.
[8]  Li, M.; Lu, Q.; Nuli, Y.; Qian, X. Core-shell and hollow microspheres composed of Tin oxide nanocrystals as anode materials for lithium-ion batteries. Electrochem. Solid State Lett. 2007, 10, K33–K37, doi:10.1149/1.2745631.
[9]  Yu, Y.; Chen, C.H.; Shi, Y. A Tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv. Mater. 2007, 19, 993–997, doi:10.1002/adma.200601667.
[10]  Lee, K.T.; Jung, Y.S.; Oh, S.M. Synthesis of Tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 2003, 125, 5652–5653, doi:10.1021/ja0345524.
[11]  Ke, F.S.; Huang, L.; Wei, H.B.; Cai, J.S.; Fan, X.Y.; Yang, F.Z.; Sun, S.G. Fabrication and properties of macroporous tin–cobalt alloy film electrodes for lithium-ion batteries. J. Power Sources 2007, 170, 450–455, doi:10.1016/j.jpowsour.2007.04.019.
[12]  Machill, S.; Shodai, T.; Sakurai, Y.; Yamaki, J.I. Electrochemical characterization of Tin based composite oxides as negative electrodes for lithium batteries. J. Power Sources 1998, 73, 216–223, doi:10.1016/S0378-7753(97)02810-3.
[13]  Paek, S.M.; Yoo, E.J.; Honma, I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2009, 9, 72–75, doi:10.1021/nl802484w.
[14]  Deng, J.; Yan, C.; Yang, L.; Baunack, S.; Oswald, S.; Wendrock, H.; Mei, Y.; Schmidt, O.G. Sandwich-stacked SnO2/Cu hybrid nanosheets as multichannel anodes for lithium ion batteries. ACS Nano 2013, 7, 6948–6954.
[15]  Wang, D.; Kou, R.; Choi, D.; Yang, Z.; Nie, Z.; Li, J.; Saraf, L.V.; Hu, D.; Zhang, J.; Graff, G.L.; et al. Ternary self-assembly of ordered metal oxide?graphene nanocomposites for electrochemical energy storage. ACS Nano 2010, 4, 1587–1595, doi:10.1021/nn901819n.
[16]  Wang, G.; Shen, X.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 2009, 47, 2049–2053, doi:10.1016/j.carbon.2009.03.053.
[17]  Chen, S.Q.; Chen, P.; Wu, M.H.; Pan, D.Y.; Wang, Y. Graphene supported Sn–Sb@carbon core-shell particles as a superior anode for lithium ion batteries. Electrochem. Commun. 2010, 12, 1302–1306, doi:10.1016/j.elecom.2010.07.005.
[18]  Kim, H.; Kim, S.W.; Park, Y.U.; Gwon, H.; Seo, D.H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813–821, doi:10.1007/s12274-010-0050-4.
[19]  Wang, Z.Y.; Zhang, H.; Li, N.; Shi, Z.J.; Gu, Z.N.; Cao, G.P. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res. 2010, 3, 748–756, doi:10.1007/s12274-010-0041-5.
[20]  Li, Y.M.; Lv, X.J.; Lu, J.; Li, J.H. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. 2010, 114, 21770–21774.
[21]  Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367, doi:10.1038/35104644.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133