全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2013 

CO and NO2 Selective Monitoring by ZnO-Based Sensors

DOI: 10.3390/nano3030357

Keywords: ZnO, nanoparticles, nanofibers, gas sensor, CO, NO2, sol-gel, electrospinning

Full-Text   Cite this paper   Add to My Lib

Abstract:

ZnO nanomaterials with different shapes were synthesized, characterized and tested in the selective monitoring of low concentration of CO and NO 2 in air. ZnO nanoparticles (NPs) and nanofibers (NFs) were synthesized by a modified sol-gel method in supercritical conditions and electrospinning technique, respectively. CO and NO 2 sensing tests have demonstrated that the annealing temperature and shape of zinc oxide nanomaterials are the key factors in modulating the electrical and sensing properties. Specifically, ZnO NPs annealed at high temperature (700 °C) have been found sensitive to CO, while they displayed negligible response to NO 2. The opposite behavior has been registered for the one-dimensional ZnO NFs annealed at medium temperature (400 °C). Due to their adaptable sensitivity/selectivity characteristics, the developed sensors show promising applications in dual air quality control systems for closed ambient such as automotive cabin, parking garage and tunnels.

References

[1]  Kolmakov, A.; Moskovits, M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res. 2004, 34, 151, doi:10.1146/annurev.matsci.34.040203.112141.
[2]  Yamazoe, N. New approaches for improving semiconductor gas sensors. Sens. Actuators B 1991, 5, 7–19, doi:10.1016/0925-4005(91)80213-4.
[3]  Viswanath, R.N.; Ramasamy, S.; Ramamoorthy, R.; Jayavel, P.; Nagarajan, T. Preparation and characterization of nanocrystalline ZnO based materials for varistor applications. Nanostruct. Mater. 1995, 6, 993–996, doi:10.1016/0965-9773(95)00229-4.
[4]  Wu, M.S.; Azuma, A.; Shiosaki, T.; Kawabata, A. Low-loss ZnO optical waveguides for SAW-AO applications. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1989, 36, 442–445, doi:10.1109/58.31781.
[5]  Jayaraj, M.K.; Antony, A.; Ramachandran, M. Transparent conducting zinc oxide thin film prepared by off-axis RF magnetron sputtering. Bull. Mater. Sci. 2002, 25, 227–230, doi:10.1007/BF02711158.
[6]  Keis, K.; Bauer, C.; Boschloo, G.; Hagfeldt, A.; Westermark, K.; Rensmo, H.; Siegbahn, H. Nanostructured ZnO electrodes for dye-sensitized solar cell applications. J. Photochem. Photobiol. A 2002, 148, 57–64, doi:10.1016/S1010-6030(02)00039-4.
[7]  Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R.; Choi, H. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 2002, 12, 323–331, doi:10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G.
[8]  Roy, S.; Basu, S. Improved zinc oxide film for gas sensor applications. Bull. Mater. Sci. 2002, 25, 513–515, doi:10.1007/BF02710540.
[9]  Raju, A.R.; Rao, C.N.R. Gas sensing characteristics of ZnO and copper impregnated ZnO. Sens. Actuators B 1991, 3, 305–310, doi:10.1016/0925-4005(91)80021-B.
[10]  El Mir, L.; Ben Ayadi, Z.; Saadoun, M.; von Bardeleben, H.J.; Djessas, K.; Zeinert, A. Optical, electrical and magnetic properties of transparent, n-type conductive Zn0.90?xV0.10AlxO thin films elaborated from aerogel nanopowder. Phys. Stat. Sol. 2007, 204, 3266–3277, doi:10.1002/pssa.200723046.
[11]  Koshizaki, N.; Yasumoto, K.; Sasaki, T. Sensing characteristics of ZnO based NOx sensor. Sens. Actuators B 2000, 66, 119–121, doi:10.1016/S0925-4005(00)00323-3.
[12]  Tian, S.; Yang, F.; Zeng, D.; Xie, C. Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J. Phys. Chem. C 2012, 116, 10586–10591, doi:10.1021/jp2123778.
[13]  Neri, G.; Bonavita, A.; Micali, G.; Rizzo, G.; Callone, E.; Carturan, G. Resistive CO gas sensors based on In2O3 and InSnOx nanopowders synthesized via starch-aided sol-gel process for automotive applications. Sens. Actuators B 2008, 132, 224–233, doi:10.1016/j.snb.2008.01.030.
[14]  Galatsis, K.; Wlodarski, W. Car cabin air quality sensors and systems. Encycl. Sens. 2006, 8, 1–11.
[15]  Pijolat, C.; Pupier, C.; Testud, C.; Lalauze, R.; Montanaro, L.; Negro, A.; Malvicino, C. Electrochemical sensors for CO/NOx detection in automotive applications. J. Electroceram. 1998, 2, 181–191, doi:10.1023/A:1009974800101.
[16]  Pijolat, C.; Viricelle, J.P.; Tournier, G.; Montmeat, P. Application of membranes and filtering films for gas sensors improvements. Thin. Solid Films 2005, 490, 7–16, doi:10.1016/j.tsf.2005.04.017.
[17]  Gurlo, A. Nanosensors: Towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 2011, 3, 154–165, doi:10.1039/c0nr00560f.
[18]  Sensor Business Digest. In Sensor Industry Developments and Trends; Gale Group: Farmington Hills, MI, USA, 2002.
[19]  El Mir, L.; El Ghoul, J.; Alaya, S.; Ben Salem, M.; Barthou, C.; von Bardeleben, H.J. Synthesis and luminescence properties of vanadium-doped man-sized zinc oxide aerogel. Phys. B Condens. Matter 2008, 403, 1770–1774, doi:10.1016/j.physb.2007.10.069.
[20]  Wang, G.; Ji, Y.; Huang, X.; Yang, X.; Gouma, P.-I.; Dudley, M. Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 2006, 110, 23777–23782.
[21]  JCPDS Card No. 36-1451; Crystalstar: Swarthmore, PA, USA.
[22]  Shinde, S.D.; Patil, G.E.; Kajale, D.D.; Wagh, V.G.; Gaikwad, V.B.; Jain, G.H. Effect of annealing on gas sensing performance of nanostructured ZnO thick film resistors. Int. J. Smart Sens. Intell. Syst. 2012, 5, 277–294.
[23]  Barreca, D.; Bekermann, D.; Comini, E.; Devi, A.; Fischer, R.A.; Gasparotto, A.; Maccato, C.; Sada, C.; Sberveglieri, G.; Tondello, E. 1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases. Sens. Actuators B 2010, 149, 1–7, doi:10.1016/j.snb.2010.06.048.
[24]  Liu, C.-Y.; Chen, C.-F.; Leu, J.-P. Fabrication and CO sensing properties of mesostructured ZnO gas sensors. J. Electrochem. Soc. 2009, 156, J16–J19, doi:10.1149/1.3021044.
[25]  Barreca, D.; Bekermann, D.; Comini, E.; Devi, A.; Fischer, R.A.; Gasparotto, A.; Maccato, C.; Sada, C.; Sberveglieri, G.; Tondello, E. Urchin-like ZnO nanorod arrays for gas sensing applications. Cryst. Eng. Comm. 2010, 12, 3419–3421, doi:10.1039/c0ce00139b.
[26]  Li, C.C.; Du, Z.F.; Li, L.M.; Yu, H.C.; Wan, Q.; Wang, T.H. Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature. Appl. Phys. Lett. 2007, 91, 032101–032103, doi:10.1063/1.2752541.
[27]  Baratto, C.; Sberveglieri, G.; Onischuk, A.; Caruso, B.; di Stasio, S. Low temperature selective NO2 sensors by nanostructured fibres of ZnO. Sens. Actuators B 2004, 100, 261–265, doi:10.1016/j.snb.2003.12.045.
[28]  Hsueh, T.J.; Chen, Y.W.; Chang, S.J.; Wang, S.F.; Hsu, C.L.; Lin, Y.R.; Lin, T.S.; Chen, I.C. ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates. Sens. Actuators B 2007, 125, 498, doi:10.1016/j.snb.2007.02.059.
[29]  Lee, C.; Choi, S.-W.; Park, J.-Y.; Kim, S.S. Synthesis of ZnO nanofibers and their gas sensing properties. Sens. Lett. 2011, 9, 132–136, doi:10.1166/sl.2011.1435.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133