全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2013 

Alkyl and Aromatic Amines as Digestive Ripening/Size Focusing Agents for Gold Nanoparticles

DOI: 10.3390/nano3030370

Keywords: amines, gold nanoparticles, inverse micelle, metal vaporization

Full-Text   Cite this paper   Add to My Lib

Abstract:

Both long chain alkyl thiols and alkyl amines behave as size focusing agents for gold nanoparticles, a process that is under thermodynamic control. However, amines do not oxidize surface gold atoms while thiols do oxidize surface gold to gold(I) with evolution of hydrogen gas. Therefore, alkyl amines participate in digestive ripening by a different mechanism. The efficiency of alkyl amines for this process is described and compared, and ultimate gold particle size differences are discussed. Reported herein is a detailed investigation of alkyl chain lengths for alkyl amines, aromatic amines (aniline), and unusually reactive amines (2-phenylethyl amine). Also, two methods of preparation of the crude gold nanoparticles were employed: gold ion reduction/inverse micelle vs. metal vaporization (Solvated Metal Atom Dispersion—SMAD).

References

[1]  Lin, X.M.; Sorensen, C.M.; Klabunde, K.J. Digestive ripening segregation and superlattice formation in gold nanocrystal colloids. J. Nanopart. Res. 2000, 2, 157–164.
[2]  Klabunde, K.J.; Sorensen, C.M.; Stoeva, S.I.; Prasad, B.L.V.; Smetana, A.B.; Lin, X.M. Digestive Ripening, or “Nanomachining”, to Achieve Nanocrystal Size Control. In Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control, Part II Methodologies; Corrain, C., Schmid, G., Toshima, N., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2008. Chapter 11; pp. 233–252.
[3]  Prasad, B.L.V.; Sorensen, C.M.; Klabunde, K.J. Gold nanoparticle superlattices. Chem. Soc. Rev. 2008, 37, 1871–1883, doi:10.1039/b712175j.
[4]  Stoeva, S.; Klabunde, K.J.; Sorensen, C.M.; Dragieva, I. Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J. Am. Chem. Soc. 2002, 124, 2305–2311, doi:10.1021/ja012076g.
[5]  Lin, X.M.; Jaeger, H.M.; Sorensen, C.M.; Klabunde, K.J. Formation of long-range-ordered nanocrystal superlattices on silicon nitride surfaces. J. Phys. Chem. B 2001, 105, 3353–3357, doi:10.1021/jp0102062.
[6]  Kalidindi, S.B.; Jagirdar, B.R. Highly monodisperse colloidal magnesium nanoparticles by room temperature digestive ripening. Inorg. Chem. 2009, 48, 4524–4529, doi:10.1021/ic9003577.
[7]  Barngrover, B.M.; Aikens, C.M. Electron and hydride addition to gold(I) thiolate oligomers: Implications for gold-thiolate nanoparticle growth mechanisms. J. Phys. Chem. Lett. 2011, 2, 990–994, doi:10.1021/jz200310p.
[8]  Qian, H.; Zhu, M.; Andersen, U.N.; Jin, R. Facile, large-scale synthesis of dodecanethiol-stabilized Au38 clusters. J. Phys. Chem. A 2009, 113, 4281–4284, doi:10.1021/jp810893w.
[9]  Wu, Z.; MacDonald, M.A.; Chen, J.; Zhang, P.; Jin, R. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J. Am. Chem. Soc. 2011, 133, 9670–9673.
[10]  Wu, Z.; Chen, J.; Jin, R. One-pot synthesis of Au25(SG)18 2- and 4-nm gold nanoparticles and comparison of their size-dependent properties. Adv. Funct. Mater. 2011, 21, 177–183, doi:10.1002/adfm.201001120.
[11]  Qian, H.; Zhu, Y.; Jin, R. Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 2009, 3, 3795–3803, doi:10.1021/nn901137h.
[12]  Qian, H.; Jin, R. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett. 2009, 9, 4083–4087, doi:10.1021/nl902300y.
[13]  Eustis, S.; Mostafa, A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217, doi:10.1039/b514191e.
[14]  Turkevitch, J.; Stevenson, P.C.; Hillier, J. Nucleation and growth process in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75, doi:10.1039/df9511100055.
[15]  Giersig, M.; Mulvaney, P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 1993, 9, 3408–3413, doi:10.1021/la00036a014.
[16]  Bethell, D.; Brust, M.; Schiffrin, D.J.; Kiely, C. From monolayers to nanostructured materials: An organic chemists view. J. Electroanal. Chem. 1996, 409, 137–143, doi:10.1016/0022-0728(96)04533-0.
[17]  Rowe, M.P.; Plass, K.E.; Kim, K.; Kurdak, C.; Zellers, E.T.; Matzger, A.J. Single-phase synthesis of functionalized gold nanoparticles. Chem. Mater. 2004, 16, 3513–3517, doi:10.1021/cm035049t.
[18]  Yee, C.K.; Jordan, R.; Ulman, A.; White, H.; King, A.; Rafailovich, M.; Sokolov, J. Novel one-phase synthesis of thiol-functionalized gold, palladium, and iridium nanoparticles using superhydride. Langmuir 1999, 15, 3486–3491, doi:10.1021/la990015e.
[19]  Hostetler, M.J.; Wingate, J.E.; Zhong, C.J.; Harris, J.E.; Vachet, R.W.; Clark, M.R.; Londono, J.D.; Green, S.J.; Stokes, J.J.; Wignall, G.D.; et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size. Langmuir 1998, 14, 17–30, doi:10.1021/la970588w.
[20]  Chen, S.H.; Kimura, K. Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir 1999, 15, 1075–1082, doi:10.1021/la9812828.
[21]  Templeton, A.C.; Chen, S.W.; Gross, S.M.; Murray, R.W. Water-soluble, isolable gold clusters protected by tiopronin and coenzyme A monolayers. Langmuir 1999, 15, 66–76, doi:10.1021/la9808420.
[22]  M?ssmer, S.; Spatz, J.P.; M?ller, M.; Aberle, T.; Schmidt, J.; Burchard, W. Solution behavior of poly (styrene)-B lock-poly (2-vinylpyridine) micelles containing gold nanoparticles. Macromolecules 2000, 33, 4791–4798, doi:10.1021/ma992006i.
[23]  Sau, T.K.; Pal, A.; Jana, N.R.; Wang, Z.L.; Pal, T. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J. Nanopart. Res. 2001, 3, 257–261.
[24]  Meltzer, S.; Resch, R.; Koel, B.E.; Thompson, M.E.; Madhukar, A.; Requicha, A.A.G.; Will, P. Fabrication of nanostructures by hydroxylamine seeding of gold nanoparticle templates. Langmuir 2001, 17, 1713–1718, doi:10.1021/la001170s.
[25]  Chen, W.; Cai, W.P.; Liang, C.H.; Zhang, L.D. Synthesis of gold nanoparticles dispersed within pores of mesoporous silica induced by ultrasonic irradiation and its characterization. Mater. Res. Bull. 2001, 36, 335–342, doi:10.1016/S0025-5408(01)00497-4.
[26]  Chen, W.; Cai, W.; Zhang, L.; Wang, G.; Zhang, L. Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. J. Colloid Surf. Sci. 2001, 238, 291–295, doi:10.1006/jcis.2001.7525.
[27]  Pol, V.G.; Gedanken, A.; Calderro-Moreno, J. Deposition of gold nanoparticles on silica spheres: A sonochemical approach. Chem. Mater. 2003, 15, 1111–1118, doi:10.1021/cm021013+.
[28]  Dawson, A.; Kamat, P.V. Complexation of gold nanoparticles with radiolytically generated thiocyanate radicals ((SCN)2??). J. Phys. Chem. B 2000, 104, 11842–11846, doi:10.1021/jp0030490.
[29]  Gachard, E.; Remita, H.; Khatouri, J.; Keita, B.; Nadjo, L.; Belloni, J. Radiation-induced and chemical formation of gold clusters. New J. Chem. 1998, 22, 1257–1265, doi:10.1039/a804445g.
[30]  Khomutov, G.B. Two-dimensional synthesis of anisotropic nanoparticles. Colloids Surf. 2002, 202, 243–267, doi:10.1016/S0927-7757(01)01079-2.
[31]  Nakamoto, M.; Yamamoto, M.; Fukusumi, M. Thermolysis of gold(I) thiolate complexes producing novel gold nanoparticles passivated by alkyl groups. Chem. Commun. 2002, 15, 1622–1623, doi:10.1039/b203736j.
[32]  Shimizu, T.; Teranishi, T.; Hasegawa, S.; Miyake, M. Size evolution of alkanethiol-protected gold nanoparticles by heat-treatment in the solid state. J. Phys. Chem. B 2003, 107, 2719–2724, doi:10.1021/jp026920g.
[33]  Lin, S.; Franklin, M.T.; Klabunde, K.J. Non-aqueous colloidal gold. Clustering of metal atoms in organic media. 12. Langmuir 1986, 2, 259–260, doi:10.1021/la00068a027.
[34]  Naoe, K.; Petit, C.; Pileni, M.P. From wormlike to spherical palladium nanocrystals: Digestive ripening. J. Phys. Chem. C 2007, 111, 16249–16254, doi:10.1021/jp073957y.
[35]  Teranishi, T.; Hasegawa, S.; Shimizu, T.; Miyake, M. Heat-induced size evolution of gold nanoparticles in the solid state. Adv. Mater. 2001, 13, 1699–1701, doi:10.1002/1521-4095(200111)13:22<1699::AID-ADMA1699>3.0.CO;2-3.
[36]  Brust, M.; Kiely, C.J. Colloids and Colloid Assemblies; Caruso, F., Ed.; Wiley-VCH: Weinheim, Germany, 2004; pp. 96–119.
[37]  Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346, doi:10.1021/cr030698+.
[38]  Klabunde, K.J.; Richards, R. Nanoscale Materials in Chemistry; Wiley Publishers: New York, NY, USA, 2009; Volume 2.
[39]  Templeton, A.C.; Wuelfing, M.P.; Murray, R.W. Monolayer protected cluster molecules. Acc. Chem. Res. 2000, 33, 27–36, doi:10.1021/ar9602664.
[40]  Jose, D.; Matthiesen, J.E.; Parsons, C.; Sorensen, C.M.; Klabunde, K.J. Size focusing of nanoparticles by thermodynamic control through ligand interactions. Molecular clusters compared with nanomaterials of metals. J. Phys. Chem. Lett. 2012, 3, 885–890, doi:10.1021/jz201640e.
[41]  Prasad, B.L.V.; Stoeva, S.I.; Sorensen, C.M.; Klabunde, K.J. Digestive-ripening agents for gold nanoparticles: Alternatives to thiols. Chem. Mater. 2003, 15, 935–942, doi:10.1021/cm0206439.
[42]  Cardenas-Trivino, G.; Klabunde, K.J.; Dale, B. Living colloidal palladium in non-aqueous solvents, formation, stability, and film forming properties. Clustering of metal atoms in organic media 14. Langmuir 1987, 3, 986–992, doi:10.1021/la00078a019.
[43]  Matthiesen, J.E.; Jose, D.; Sorensen, C.M.; Klabunde, K.J. Loss of hydrogen upon exposure of thiol to gold clusters at low temperature. J. Am. Chem. Soc. 2012, 134, 9376–9379, doi:10.1021/ja302339d.
[44]  Stoeva, S.I.; Prasad, B.L.V.; Sitharaman, U.; Stoimenov, P.; Zaikovski, V.; Sorensen, C.M.; Klabunde, K.J. Face-centered cubic and hexagonal close-packed nanocrystal superlattices of gold nanoparticles prepared by different methods. J. Phys. Chem. B. 2003, 107, 7441–7448, doi:10.1021/jp030013+.
[45]  Lin, J.; Zhou, W.; O’Connor, C.J. Formation of ordered arrays of gold nanoparticles from CTAB reverse micelles. Mater. Lett. 2001, 49, 282–286, doi:10.1016/S0167-577X(00)00385-2.
[46]  Marchetti, B.; Joseph, Y.; Bertagnolli, H. Amine-capped gold nanoparticles: Reaction steps during the synthesis and the influence of the ligand on the particle size. J. Nanopart. Res. 2011, 13, 3353–3362, doi:10.1007/s11051-011-0358-3.
[47]  Taleb, A.; Petit, C.; Pileni, M.P. Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles. J. Phys. Chem. B 1998, 102, 2214–2220, doi:10.1021/jp972807s.
[48]  Whitesides, G.M.; Love, J.C. The art of building small. Sci. Am. 2001, 285, 39–47.
[49]  Prasad, B.L.V.; Stoeva, S.I.; Sorensen, C.M.; Klabunde, K.J. Digestive ripening of thiolated gold nanoparticles: The effect of alkyl chain length. Langmuir 2002, 18, 7515–7520, doi:10.1021/la020181d.
[50]  Chikan, V.; Kelley, D.F. Size dependent spectroscopy of MoS2 nanoclusters. J. Phys. Chem. B 2002, 106, 3794–3804, doi:10.1021/jp011898x.
[51]  Ohara, P.C.; Leff, D.V.; Heath, J.R.; Gelbart, W.M. Size-dependent phase separations and opal formation in weakly interacting gold nanocrystals: Experiment and theory. Phys. Rev. Lett. 1995, 75, 3466–3469, doi:10.1103/PhysRevLett.75.3466.
[52]  Lin, X.M.; Wang, G.M.; Sorensen, C.M.; Klabunde, K.J. Formation and dissolution of gold nanocrystal superlattices in a colloidal solution. J. Phys. Chem. B 1999, 103, 5488–5492, doi:10.1021/jp990729y.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133