全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2013 

Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters

DOI: 10.3390/nano3030393

Keywords: carbon nanotubes, electron field emitters

Full-Text   Cite this paper   Add to My Lib

Abstract:

Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs) are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules.

References

[1]  Chernozatonskii, L.A.; Gulyaev, Y.V.; Kosakovskaja, Z.J.; Sinitsyn, N.I.; Torgashov, G.V.; Zakharchenko, Yu, F.; Fedorov, E.A.; Val’chuk, V.P. Electron field emission from nanofilament carbon films. Chem. Phys. Lett. 1995, 233, 63–68, doi:10.1016/0009-2614(94)01418-U.
[2]  De Heer, W.A.; Chatelain, A.; Ugarte, D. A carbon nanotube field-emission electron source. Science 1995, 270, 1179–1180.
[3]  Rinzler, A.G.; Hafner, J.H.; Nikolaev, P.; Nordlander, P.; Colbert, D.T.; Smalley, R.E.; Lou, L.; Kim, S.G. Unraveling nanotubes: Field emission from an atomic wire. Science 1995, 269, 1550–1553.
[4]  Eletskii, A.V. Carbon nanotubes and their emission properties. Phys. Usp. 2002, 45, 369–402, doi:10.1070/PU2002v045n04ABEH001033.
[5]  Eletskii, A.V. Carbon nanotube-based electron field emitters. Phys. Usp. 2010, 53, 863–892, doi:10.3367/UFNe.0180.201009a.0897.
[6]  Sohn, J.I.; Lee, S.; Song, Y.H.; Choi, S.-Y.; Cho, K.-I.; Namet, K.-S. Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays. Appl. Phys. Lett. 2001, 78, 901–903, doi:10.1063/1.1335846.
[7]  Wang, Q.H.; Yan, M.; Chang, R.P.H. Flat panel display prototype using gated carbon nanotube field emitters. Appl. Phys. Lett. 2001, 78, 1294–1296, doi:10.1063/1.1351847.
[8]  Mauger, M.; Vu, T.V. Vertically aligned carbon nanotube arrays for giant field emission displays. J. Vac. Sci. Technol. B 2006, 24, 997–1003, doi:10.1116/1.2179454.
[9]  Matsumoto, T.; Mimura, H. Point X-ray source using graphite nanofibers and its application to X-ray radiography. Appl. Phys. Lett. 2003, 82, 1637–1639, doi:10.1063/1.1558969.
[10]  Yue, G.Z.; Qiu, Q.; Gao, B.; Cheng, Y.; Zhang, J.; Shimoda, H.; Chang, S.; Lu, J.P.; Zhou, O. Generation of continuous and pulsed diagnostic imaging X-ray radiation using a carbon-nanotube-based field-emission cathode. Appl. Phys. Lett. 2002, 81, 355–357, doi:10.1063/1.1492305.
[11]  Gutman, G.; Strumban, E.; Sozontov, E.; Jenrow, K. X-ray scalpel—A new device for targeted X-ray brachytherapy and stereotactic radiosurgery. Phys. Med. Biol. 2007, 52, 1757–1770.
[12]  Dickler, A. Xoft Axxent electronic brachytherapy—A new device for delivering brachytherapy to the breast. Nat. Rev. Clin. Oncol. 2009, 6, 138–142, doi:10.1038/ncponc1319.
[13]  Schneider, F.; Fuchs, H.; Steil, F.L.V.; Ziglio, F.; Kraus-Tiefenbacher, U.; Lohr, F.; Wenzet, F. A novel device for intravaginal electronic brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 1298–1305, doi:10.1016/j.ijrobp.2009.01.082.
[14]  Rivard, M.J.; Davis, S.D.; De Werd, L.A.; Rusch Thomas, W.; Axelrod, S. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source. Med. Phys. 2006, 33, 4020–4032, doi:10.1118/1.2357021.
[15]  Kim, H.J.; Ha, J.M.; Heo, S.H.; Choy, S.O. Small-sized flat-tip CNT emitters for miniaturized X-ray tubes. J. Nanomater. 2012, 2012, doi:10.1155/2012/854602.
[16]  Zhang, J.; Yang, G.; Lee, Y.Z.; Lu, J.P.; Zhou, O. Multiplexing radiography using a carbon nanotube based X-ray source. Appl. Phys. Lett. 2006, 89, doi:10.1063/1.2234744.
[17]  Kawakita, K.; Hata, K.; Sato, H.; Saito, Y. Development of microfocused X-ray source by using carbon nanotube field emitter. J. Vac. Sci. Technol. B 2006, 24, 950–952, doi:10.1116/1.2183785.
[18]  Saito, Y.; Uemura, S.; Hamaguchi, K. Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn. J. Appl. Phys. 1998, 37, L346–L348.
[19]  Saito, Y.; Uemura, S. Field emission from carbon nanotubes and its application to electron sources. Carbon 2000, 38, 169–182, doi:10.1016/S0008-6223(99)00139-6.
[20]  Obraztsov, A.N.; Kleshch, V.I. Cold and laser stimulated electron emission from nanocarbons. J. Nanoelectron. Optoelectron. 2009, 4, 207–219, doi:10.1166/jno.2009.1023.
[21]  Croci, M.; Arfaoui, I.; St?ckli, T.; Chatelain, A.; Bonard, J.-M. A fully sealed luminescent tube based on carbon nanotube field emission. Microelectron. J. 2004, 35, 329–336, doi:10.1016/j.mejo.2003.07.003.
[22]  Antony, J.; Qiang, Y. Cathodoluminescence from a device of carbon nanotube-field emission display with ZnO nanocluster phosphor. Nanotechnology 2007, 18, doi:10.1088/0957-4484/18/29/295703.
[23]  Bonard, J.; St?ckli, T.; Noury, O.; Chatelain, A. Field emission from cylindrical carbon nanotube cathodes: Possibilities for luminescent tubes. Appl. Phys. Lett. 2001, 78, 2775–2777, doi:10.1063/1.1367903.
[24]  Teo, K.V.K.; Minoux, E.; Hudanski, L.; Peauger, F.; Schnell, J.-P.; Gangloff, L.; Legagneux, P.; Dieumegard, D.; Amaratunga, G.A.J.; Milneet, W.I. Microwave devices: Carbon nanotubes as cold cathodes. Nature 2005, 437, 968–969, doi:10.1038/437968a.
[25]  Milne, W.I.; Teo, K.B.K.; Minoux, E.; Groening, O.; Gangloff, L.; Hudanski, L.; Schnell, J.-P.; Dieumegard, D.; Peauger, F.; Bu, I.Y.Y.; et al. Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J. Vac. Sci. Technol. B 2006, 24, 345–348, doi:10.1116/1.2161223.
[26]  Fowler, R.H.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. A 1928, 119, 173–181, doi:10.1098/rspa.1928.0091.
[27]  Gomer, R. Field Emission and Field Ionization, 2nd ed. ed.; American Institute of Physics: New York, NY, USA, 1993.
[28]  Nilsson, L.; Groening, O.; Emmenegger, C.; Kuettel, O.; Schaller, E.; Schlapbach, L.; Kind, H.; Bonard, J.-M.; Kern, K. Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 2000, 76, 2071–2074, doi:10.1063/1.126258.
[29]  Bocharov, G.S.; Eletskii, A.V. Effect of screening on the emissivity of field electron emitters based on carbon nanotubes. Tech. Phys. 2005, 50, 944–947, doi:10.1134/1.1994978.
[30]  Belsky, M.; Bocharov, G.; Eletskii, A.; Sommerer, T. Field amplification in carbon nanotube’s based field emission cathodes. Tech. Phys. 2010, 55, 289–295, doi:10.1134/S1063784210020210.
[31]  Bocharov, G.S.; Eletskii, A.V.; Korshakov, A.V. Emission characteristics of carbon nanotube-based cathodes. Rev. Adv. Mater. Sci. 2003, 5, 371–374.
[32]  Zou, R.; Hu, J.; Song, Y.; Chen, H.; Chen, H.; Wu, J.; Sun, Y.; Chen, Z. Carbon nanotubes as field emitter. J. Nanosci. Nanotechnol. 2010, 10, 7876–7896, doi:10.1166/jnn.2010.3035.
[33]  Saito, R.; Dresselhaus, G.; Dresselhaus, M. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998.
[34]  Dresselhaus, M.S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties and Applications; Springer: Berlin, Germany, 2001.
[35]  Dobretsov, L.N.; Gomoyunova, M.V. Emission Electronics; Nauka Publishing House: Moscow, Russia, 1966. [in Russian].
[36]  Luo, J.; Peng, L.M.; Xue, Z.Q.; Wu, J.L. End potential barriers of single-walled carbon nanotubes and their role in field emission. Phys. Rev. B 2002, 66, 155407, doi:10.1103/PhysRevB.66.155407.
[37]  Han, S.; Ihm, J. First-principles study of field emission of carbon nanotubes. Phys. Rev. B 2002, 2002, 241402(R).
[38]  Qiao, L.; Wang, C.; Qu, C.; Zeng, Y.; Yu, S.S.; Hu, X.Y.; Zheng, W.T.; Jiang, Q. First-principles investigation on the field emission properties of B-doped carbon nanotubes. Diamond Relat. Mater. 2009, 18, 657–661.
[39]  Zheng, X.; Chen, G.; Li, Z.; Xu, N. Quantum-mechanical investigation of field-emission mechanism of a micrometer-long single-walled carbon nanotube. Phys. Rev. Lett. 2004, 92, 106803, doi:10.1103/PhysRevLett.92.106803.
[40]  Yaghoobi, P.; Walus, K.; Nojeh, A. First-principles study of quantum tunneling from nanostructures: Current in a single-walled carbon nanotube electron source. Phys. Rev. B 2009, 80, 115422, doi:10.1103/PhysRevB.80.115422.
[41]  Bulashevich, K.A.; Rotkin, V.V. Nanotube-based devices: Microscopic model. JETP Lett. 2002, 75, 205–209, doi:10.1134/1.1475724.
[42]  Mishchenko, E.G.; Raikh, M. Electrostatics of straight and bent single-walled carbon nanotubes. Phys. Rev. B 2006, 74, 155410, doi:10.1103/PhysRevB.74.155410.
[43]  Li, Z.B.; Wang, W.L. Analytic solution of charge density of single wall carbon nanotube under conditions of field electron emission. Chin. Phys. Lett. 2006, 23, 1616–1618, doi:10.1088/0256-307X/23/6/072.
[44]  Sedrakyan, T.A.; Mishchenko, E.G.; Raikh, M.E. Penetration of external field into regular and random arrays of nanotubes: Implications for field emission. Phys. Rev. B 2006, 73, 245325.
[45]  Zhao, G.; Zhang, J.; Zhang, Q.; Zhang, H.; Zhou, O.; Qin, L.-C.; Tang, J. Fabrication and characterization of single carbon nanotube emitters as point electron sources. Appl. Phys. Lett. 2006, 89, doi:10.1063/1.2387961.
[46]  Collins, P.G.; Zettle, A. Unique characteristics of cold cathode carbon-nanotube-matrix field emitters. Phys. Rev. B 1997, 55, 9391–9399, doi:10.1103/PhysRevB.55.9391.
[47]  Cheng, Y.; Zhou, O. Electron field emission from carbon nanotubes. C. R. Phys. 2003, 4, 1021–1033, doi:10.1016/S1631-0705(03)00103-8.
[48]  Kokkorakis, G.; Modinos, A.; Xanthakis, J.P. Local electric field at the emitting surface of a carbon nanotube. J. Appl. Phys. 2002, 91, 4580–4584, doi:10.1063/1.1448403.
[49]  Eletskii, A.V.; Bocharov, G.S. Emission properties of carbon nanotubes and cathodes on their basis. Plasma Sources Sci. Technol. 2009, 18, doi:10.1088/0963-0252/18/3/034013.
[50]  González-Berríos, A.; Piazza, F.; Morell, G. Numerical study of the electrostatic field gradients present in various planar emitter field emission configurations relevant to experimental research. J. Vac. Sci. Technol. B 2005, 23, 645–648, doi:10.1116/1.1849194.
[51]  Xu, Z.; Bai, X.D.; Wang, E.G.; Wang, Z.L. Field emission of individual carbon nanotube with in situ tip image and real work function. Appl. Phys. Lett. 2005, 87, 163106, doi:10.1063/1.2103420.
[52]  Edgcombe, C.J.; Valdrè, U. Microscopy and computational modelling to elucidate the enhancement factor for field electron emitters. J. Microsc. 2001, 203, 188–194, doi:10.1046/j.1365-2818.2001.00890.x.
[53]  Edgcombe, C.J.; Valdrè, U. Experimental and computational study of field emission characteristics from amorphous carbon single nanotips grown by carbon contamination. I. Experiments and computation. Philos. Mag. B 2002, 82, 987–1007.
[54]  Xu, Z.; Bai, X.D.; Wang, E.G. Geometrical enhancement of field emission of individual nanotubes studied by in situ transmission electron microscopy. Appl. Phys. Lett. 2006, 88, 133107, doi:10.1063/1.2188389.
[55]  Martinson, T.; Malov, Y.I. Differential Equations of Mathematical Physics; N.E. Bauman MGTU: Moscow, Russia, 2002. [in Russian].
[56]  Vlasova, E.; Zarubin, V.; Kuvyrkin, G. Approximate Methods of Mathematical Physics; N.E. Bauman MGTU: Moscow, Russia, 2001. [in Russian].
[57]  Bocharov, G.S.; Eletskii, A.V. Thermal instability of field emission from carbon nanotubes. Tech. Phys. 2007, 52, 498–503, doi:10.1134/S1063784207040160.
[58]  Vincent, P.; Purcell, S.T.; Journet, C.; Binh, V.T. Modelization of resistive heating of carbon nanotubes during field emission. Phys. Rev. B 2002, 66, 075406, doi:10.1103/PhysRevB.66.075406.
[59]  Eletskii, A.V. Transport properties of carbon nanotubes. Phys. Usp. 2009, 52, 209–224, doi:10.3367/UFNe.0179.200903a.0225.
[60]  Kim, P.; Shi, L.; Majumdar, A.; McEuen, P.L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 87, 215502, doi:10.1103/PhysRevLett.87.215502.
[61]  Yi, W.; Lu, L.; Zhang, D.-L.; Pan, Z.W.; Xie, S.S. Linear specific heat of carbon nanotubes. Phys. Rev. B. 1999, 59, R9015–R9018, doi:10.1103/PhysRevB.59.R9015.
[62]  Gao, B.; Komnik, A.; Egger, R.; Glattli, D.C.; Bachtold, A. Evidence for Luttinher-Liquid Behavior in Crossed Metallic Single-Wall Nanotubes. In Proceeding of the NT'05: 6th International Conference on the Science and Application of Nanotubes, Gothenburg, Sweden, 26 June–1 July 2005; p. 307.
[63]  Sveningsson, M.; Hansen, K.; Svensson, K.; Olsson, E.; Campbell, E.E.B. Quantifying temperature-enhanced electron field emission from individual carbon nanotubes. Phys. Rev. B 2005, 72, 085429, doi:10.1103/PhysRevB.72.085429.
[64]  Huang, N.; She, J.C.; Chen, J.; Deng, S.Z.; Xu, N.S.; Bishop, H.; Huq, S.E.; Wang, L.; Zhong, D.Y.; Wang, E.G.; et al. Mechanism responsible for initiating carbon nanotube vacuum breakdown. Phys. Rev. Lett. 2004, 93, 075501, doi:10.1103/PhysRevLett.93.075501.
[65]  Bonard, J.M.; Maier, F.; St?ckli, T.; Chatelain, A.; de Heer, W.A.; Salvetat, J.-P.; Forró, L. Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy 1998, 73, 7–15, doi:10.1016/S0304-3991(97)00129-0.
[66]  Bonard, J.M.; Klinke, C.; Dean, K.A.; Coll, B.F. Degradation and failure of carbon nanotube field emitters. Phys. Rev. B 2003, 67, 115406, doi:10.1103/PhysRevB.67.115406.
[67]  Tang, H.; Liang, S.D.; Deng, S.Z.; Xu, N.S. Comparison of field and thermionic emissions from carbon nanotubes. J. Phys. D 2006, 39, 5280–5284, doi:10.1088/0022-3727/39/24/026.
[68]  Bocharov, G.S.; Knizhnik, A.A.; Eletskii, A.V.; Sommerer, T.J. Influence of the electric field on the alignment of carbon nanotubes during their growth and emission. Tech. Phys. 2012, 57, 270–278, doi:10.1134/S1063784212020065.
[69]  Eletskii, A.V. Growth of Elongated Structures in a Longitudinal Electrical Field. In Electronic Properties of Novel Materials—Molecular Nanostructures; Kuzmany, H., Fink, J., Mehring, M., Roth, S., Eds.; American Institute of Physics: Melville, NY, USA, 2000; Volume 544, p. 250.
[70]  Merkulov, V.I.; Melechko, A.V.; Guillorn, M.A.; Simpson, M.L.; Lowndes, D.H.; Whealton, J.H.; Raridon, R.J. Controlled alignment of carbon nanofibers in a large-scale synthesis process. Appl. Phys. Lett. 2002, 80, 4816–4818, doi:10.1063/1.1487920.
[71]  Merkulov, V.I.; Melechko, A.V.; Guillorn, M.A.; Lowndes, D.H.; Simpson, M.L. Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl. Phys. Lett. 2001, 79, 2970–2972, doi:10.1063/1.1415411.
[72]  Chhowalla, M.; Teo, K.B.K.; Ducati, C.; Rupesinghe, N.L.; Amaratunga, G.A.J.; Ferrari, A.C.; Roy, D.; Robertson, J.; Milne, W.I. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 2001, 90, 5308–5317, doi:10.1063/1.1410322.
[73]  Shao-Jie, M.A.; Guo, W.L. Mechanism of carbon nanotubes aligning along applied electric field. Chin. Phys. Lett. 2008, 25, 270–273, doi:10.1088/0256-307X/25/1/073.
[74]  Bocharov, G.S.; Eletskii, A.V. Degradation of a CNT-based field emission cathode due to ion sputtering. Fuller. Nanotub. Carbon Nanostruct. 2012, 20, 444–450, doi:10.1080/1536383X.2012.655570.
[75]  Bocharov, G.S.; Eletskii, A.V. Degradation of a carbon nanotube-based field-emission cathode during ion sputtering. Tech. Phys. 2012, 57, 1008–1012, doi:10.1134/S1063784212070055.
[76]  Itikawa, Y.I. Cross sections for electron collisions with nitrogen molecules. J. Phys. Chem. Ref. Data 2006, 35, 31–55, doi:10.1063/1.1937426.
[77]  Itikawa, Y.I. Cross sections for electron collisions with oxygen molecules. J. Phys. Chem. Ref. Data 2009, 38, 1–20, doi:10.1063/1.3025886.
[78]  Eckstein, W. Atomic and Plasma-Material Interaction Data for Fusion; International Atomic Enegy Agency: Vienna, Austria, 2001; pp. 37–38.
[79]  Kim, W.J.; Lee, J.S.; Lee, S.M.; Song, K.Y.; Chu, C.N.; Kim, H. Better than 10 mA Field emission from an isolated structure emitter of a metal oxide/CNT composite. ACS Nano 2011, 5, 429–435, doi:10.1021/nn101956w.
[80]  Guglielmotti, V.V.; Tamburri, E.; Orlanducci, S.; Terranova, M.L.; Rossi, M.; Notarianni, M.; Fairchild, S.B.; Maruyama, B.; Behabtu, N.; Young, C.C.; et al. Macroscopic self-standing SWCNT fibres as efficient electron emitters with very high emission current for robust cold cathodes. Carbon 2013, 52, 356–362, doi:10.1016/j.carbon.2012.09.037.
[81]  Navitski, A.; Serbun, P.; Müller, G.; Joshi, R.K.; Engstler, J.; Schneider, J.J. Role of height and contact interface of CNT microstructures on Si for high current field emission cathodes. Eur. Phys. J. Appl. Phys. 2012, 59. Article Number 11302.
[82]  Su, W.S.; Chuang, F.C.; Cho, T.H.; Leung, T.C. The screening effect on field enhancement factor of the finite-length small radius single-walled carbon nanotubes. J. Appl. Phys. 2009, 106, 014301, doi:10.1063/1.3157170.
[83]  Smith, R.C.; Silva, S.R.P. Interpretation of the field enhancement factor for electron emission from carbon nanotubes. J. Appl. Phys. 2009, 106, 014314, doi:10.1063/1.3149803.
[84]  Bocharov, G.S.; Eletskii, A.V.; Sommerer, T.J. Optimization of the Parameters of a Carbon Nanotube-Based Field Emission Cathode. In Proceedings of the 11th International Conference on the Science and Application of Nanotubes, Montreal, Canada, 26 June–2 July 2010.
[85]  Obraztsov, A.; Volkov, A.; Zakhidov, A.; Petrushenko, Y.V.; Satanovskaya, O.P. Fundamental aspects and applications of low field electron emission from nanocarbons. Surf. Eng. 2003, 19, 429–436, doi:10.1179/026708403225010172.
[86]  Bocharov, G.S.; Eletskii, A.V.; Pal, A.F.; Pernbaum, A.G.; Pichugin, V.V. Emission Characteristics of CNT-Based Cathodes. In Electronic Properties of Synthetic Nanostructures; Kuzmany, H., Fink, J., Mehring, M., Roth, S., Eds.; American Institute of Physics: Melville, NY, USA, 2004; Volume 723, pp. 528–531.
[87]  Bezmelnitsyn, V.N.; Domantovskii, A.G.; Eletskii, A.V.; Obraszova, E.D.; Pal, A.F.; Pernbaum, A.G.; Pichugin, V.V.; Prichod’ko, K.E.; Suetin, N.V.; Terekhov, S.V. Production of single walled nanotubes with Ni/Cr as catalyst. Phys. Solid State 2002, 44, 656–661.
[88]  Yoshimoto, T.; Iwata, T.; Minesawa, R.; Matsumoto, K. Emission properties from carbon nanotube field emitter arrays (FEAs) grown on si emitters. Jpn. J. Appl. Phys. 2001, 40, L983–L985.
[89]  Matsumoto, K.; Kinosita, S.; Gotoh, Y.; Uchiyama, T.; Manalis, S.; Quate, C. Ultralow biased field emitter using single-wall carbon nanotube directly grown onto silicon tip by thermal chemical vapor deposition. Appl. Phys. Lett. 2001, 78, 539–541, doi:10.1063/1.1343470.
[90]  Han, I.T.; Kim, H.J.; Park, Y.J.; Lee, N.; Jang, J.E.; Kim, J.W.; Jung, J.E.; Kim, J.M. Fabrication and characterization of gated field emitter arrays with self-aligned carbon nanotubes grown by chemical vapor deposition. Appl. Phys. Lett. 2002, 81, 2070–2072.
[91]  Wadhawan, A.; Stallcup, R.E.; Stephens, K.F.; Perez, J.M.; Akwani, I.A. Effects of O2, Ar, and H2 gases on the field-emission properties of single-walled and multiwalled carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1867–1869, doi:10.1063/1.1401785.
[92]  Guillorn, M.A.; Hale, M.D.; Merkulov, V.I.; Simpson, M.L.; Eres, G.Y.; Cui, H.; Puretzky, A.A.; Geohegan, D.B. Integrally gated carbon nanotube field emission cathodes produced by standard microfabrication techniques. J. Vac. Sci. Technol. B 2003, 21, 957–959, doi:10.1116/1.1565343.
[93]  Yang, Q.; Xiao, C.; Chen, W.; Singh, A.K.; Asai, T.; Hirose, A. Growth mechanism and orientation control of well-aligned carbon nanotubes. Diam. Relat. Mater. 2003, 12, 1482–1487, doi:10.1016/S0925-9635(03)00178-X.
[94]  Bocharov, G.S.; Eletskii, A.V.; Sommerer, T.J. Optimization of the parameters of a carbon nanotube-based field emission cathode. Tech. Phys. 2011, 56, 540–545, doi:10.1134/S1063784211040086.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133