全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2013 

Synthesis of Microspherical LiFePO4-Carbon Composites for Lithium-Ion Batteries

DOI: 10.3390/nano3030443

Keywords: energy storage, nanomaterials, lithium-ion batteries, LiFePO4

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper reports an “all in one” procedure to produce mesoporous, micro-spherical LiFePO 4 composed of agglomerated crystalline nanoparticles. Each nanoparticle is individually coated with a thin glucose-derived carbon layer. The main advantage of the as-synthesized materials is their good performance at high charge-discharge rates. The nanoparticles and the mesoporosity guarantee a short bulk diffusion distance for both lithium ions and electrons, as well as additional active sites for the charge transfer reactions. At the same time, the thin interconnected carbon coating provides a conductive framework capable of delivering electrons to the nanostructured LiFePO 4.

References

[1]  Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194, doi:10.1149/1.1837571.
[2]  Wang, Y.G.; He, P.; Zhou, H.S. Olivine LiFePO(4): Development and future. Energy Environ. Sci. 2011, 4, 805–817, doi:10.1039/c0ee00176g.
[3]  Ellis, B.L.; Lee, K.T.; Nazar, L.F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 2010, 22, 691–714, doi:10.1021/cm902696j.
[4]  Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sour. 2010, 195, 2419–2430, doi:10.1016/j.jpowsour.2009.11.048.
[5]  Huang, H.; Faulkner, T.; Barker, J.; Saidi, M.Y. Lithium metal phosphates, power and automotive applications. J. Power Sour. 2009, 189, 748–751, doi:10.1016/j.jpowsour.2008.08.024.
[6]  Tarascon, J.M.; Recham, N.; Armand, M.; Chotard, J.N.; Barpanda, P.; Walker, W.; Dupont, L. Hunting for better Li-based electrode materials via low temperature inorganic synthesis. Chem. Mater. 2010, 22, 724–739, doi:10.1021/cm9030478.
[7]  Huang, H.; Yin, S.C.; Nazar, L.F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid State Lett. 2001, 4, A170–A172, doi:10.1149/1.1396695.
[8]  Ravet, N.; Chouinard, Y.; Magnan, J.F.; Besner, S.; Gauthier, M.; Armand, M. Electroactivity of natural and synthetic triphylite. J. Power Sour. 2001, 97–98, 503–507, doi:10.1016/S0378-7753(01)00727-3.
[9]  Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367, doi:10.1038/35104644.
[10]  Chung, S.Y.; Bloking, J.T.; Chiang, Y.M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123–128, doi:10.1038/nmat732.
[11]  Barker, J.; Saidi, M.Y.; Swoyer, J.L. Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem. Solid State Lett. 2003, 6, A53–A55, doi:10.1149/1.1544211.
[12]  Gaberscek, M.; Dominko, R.; Bele, M.; Remskar, M.; Hanzel, D.; Jamnik, J. Porous, carbon-decorated LiFePO4 prepared by sol-gel method based on citric acid. Solid State Ionics 2005, 176, 1801–1805, doi:10.1016/j.ssi.2005.04.034.
[13]  Wang, Y.Q.; Wang, J.L.; Yang, J.; Nuli, Y.N. High-rate LiFePO4 electrode material synthesized by a novel route from FePO4 center dot 4H(2)O. Adv. Funct. Mater. 2006, 16, 2135–2140, doi:10.1002/adfm.200600442.
[14]  Hsu, K.F.; Tsay, S.Y.; Hwang, B.J. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route. J. Mater. Chem. 2004, 14, 2690–2695, doi:10.1039/b406774f.
[15]  Wagemaker, M.; Ellis, B.L.; Luetzenkirchen-Hecht, D.; Mulder, F.M.; Nazar, L.F. Proof of supervalent doping in olivine LiFePO4. Chem. Mater. 2008, 20, 6313–6315, doi:10.1021/cm801781k.
[16]  Wang, D.Y.; Li, H.; Shi, S.Q.; Huang, X.J.; Chen, L.Q. Improving the rate performance of LiFePO4 by Fe-site doping. Electrochim. Acta 2005, 50, 2955–2958, doi:10.1016/j.electacta.2004.11.045.
[17]  Wang, Y.; Wang, Y.; Hosono, E.; Wang, K.; Zhou, H. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. Int. Ed. 2008, 47, 7461–7465, doi:10.1002/anie.200802539.
[18]  Liu, J.; Conry, T.E.; Song, X.; Doeff, M.M.; Richardson, T.J. Nanoporous spherical LiFePO4 for high performance cathodes. Energy Environ. Sci. 2011, 4, 885–888, doi:10.1039/c0ee00662a.
[19]  Konarova, M.; Taniguchi, I. Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. J. Power Sour. 2010, 195, 3661–3667, doi:10.1016/j.jpowsour.2009.11.147.
[20]  Ying, J.R.; Wan, C.R.; Jiang, C.Y.; Li, Y.X. Preparation and characterization of high-density spherical LiNi0.8Co0.2O2 cathode material for lithium secondary batteries. J. Power Sour. 2001, 99, 78–84, doi:10.1016/S0378-7753(01)00477-3.
[21]  Qian, J.F.; Zhou, M.; Cao, Y.L.; Ai, X.P.; Yang, H.X. Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries. J. Phys. Chem. C 2010, 114, 3477–3482, doi:10.1021/jp912102k.
[22]  Yuan, L.X.; Wang, Z.H.; Zhang, W.X.; Hu, X.L.; Chen, J.T.; Huang, Y.H.; Goodenough, J.B. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 2011, 4, 269–284, doi:10.1039/c0ee00029a.
[23]  Oh, S.W.; Myung, S.T.; Oh, S.M.; Yoon, C.S.; Amine, K.; Sun, Y.K. Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries. Electrochim. Acta 2010, 55, 1193–1199, doi:10.1016/j.electacta.2009.10.007.
[24]  Lu, A.-H.; Salabas, E.L.; Schueth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem.-Int. Ed. 2007, 46, 1222–1244, doi:10.1002/anie.200602866.
[25]  Zhao, H.; Qu, Z.-R.; Ye, H.-Y.; Xiong, R.-G. In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties. Chem. Soc. Rev. 2008, 37, 84–100.
[26]  Titirici, M.-M.; White, R.J.; Falco, C.; Sevilla, M. Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage. Energy Environ. Sci. 2012, 5, 6796–6822, doi:10.1039/c2ee21166a.
[27]  Hu, B.; Wang, K.; Wu, L.H.; Yu, S.H.; Antonietti, M.; Titirici, M.M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813–828, doi:10.1002/adma.200902812.
[28]  Sun, C.; Rajasekhara, S.; Goodenough, J.B.; Zhou, F. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 2011, 133, 2132–2135, doi:10.1021/ja1110464.
[29]  Su, J.; Wu, X.-L.; Yang, C.-P.; Lee, J.-S.; Kim, J.; Guo, Y.-G. Self-assembled LiFePO4/C nano/microspheres by using phytic acid as phosphorus source. J. Phys. Chem. C 2012, 116, 5019–5024.
[30]  Huang, X.J.; Yan, S.J.; Zhao, H.Y.; Zhang, L.; Guo, R.; Chang, C.K.; Kong, X.Y.; Han, H.B. Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process. Mater. Charact. 2010, 61, 720–725, doi:10.1016/j.matchar.2010.04.002.
[31]  Yang, S.F.; Zavalij, P.Y.; Whittingham, M.S. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem. Commun. 2001, 3, 505–508, doi:10.1016/S1388-2481(01)00200-4.
[32]  Ellis, B.; Kan, W.H.; Makahnouk, W.R.M.; Nazar, L.F. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J. Mater. Chem. 2007, 17, 3248–3254, doi:10.1039/b705443m.
[33]  Xiang, H.; Zhang, D.; Jin, Y.; Chen, C.; Wu, J.; Wang, H. Hydrothermal synthesis of ultra-thin LiFePO4 platelets for Li-ion batteries. J. Mater. Sci. 2011, 46, 4906–4912, doi:10.1007/s10853-011-5403-1.
[34]  Murugan, A.V.; Muraliganth, T.; Manthiram, A. Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries. J. Phys. Chem. C 2008, 112, 14665–14671, doi:10.1021/jp8053058.
[35]  Devaraju, M.K.; Honma, I. Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for Lithium-ion batteries. Adv. Energy Mater. 2012, 2, 284–297, doi:10.1002/aenm.201100642.
[36]  Meligrana, G.; Gerbaldi, C.; Tuel, A.; Bodoardo, S.; Penazzi, N. Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J. Power Sour. 2006, 160, 516–522, doi:10.1016/j.jpowsour.2005.12.067.
[37]  Dokko, K.; Koizumi, S.; Nakano, H.; Kanamura, K. Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. J. Mater. Chem. 2007, 17, 4803–4810, doi:10.1039/b711521k.
[38]  Kim, D.K.; Muralidharan, P.; Lee, H.W.; Ruffo, R.; Yang, Y.; Chan, C.K.; Peng, H.; Huggins, R.A.; Cui, Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948–3952, doi:10.1021/nl8024328.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133