全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2013 

Nanostructure-Directed Chemical Sensing: The IHSAB Principle and the Effect of Nitrogen and Sulfur Functionalization on Metal Oxide Decorated Interface Response

DOI: 10.3390/nano3030469

Keywords: nanostructure directed sensing, nitrogen and sulfur functionalization

Full-Text   Cite this paper   Add to My Lib

Abstract:

The response matrix, as metal oxide nanostructure decorated n-type semiconductor interfaces are modified in situ through direct amination and through treatment with organic sulfides and thiols, is demonstrated. Nanostructured TiO 2, SnO x, NiO and Cu xO ( x = 1,2), in order of decreasing Lewis acidity, are deposited to a porous silicon interface to direct a dominant electron transduction process for reversible chemical sensing in the absence of significant chemical bond formation. The metal oxide sensing sites can be modified to decrease their Lewis acidity in a process appearing to substitute nitrogen or sulfur, providing a weak interaction to form the oxynitrides and oxysulfides. Treatment with triethylamine and diethyl sulfide decreases the Lewis acidity of the metal oxide sites. Treatment with acidic ethane thiol modifies the sensor response in an opposite sense, suggesting that there are thiol (SH) groups present on the surface that provide a Br?nsted acidity to the surface. The in situ modification of the metal oxides deposited to the interface changes the reversible interaction with the analytes, NH 3 and NO. The observed change for either the more basic oxynitrides or oxysulfides or the apparent Br?nsted acid sites produced from the interaction of the thiols do not represent a simple increase in surface basicity or acidity, but appear to involve a change in molecular electronic structure, which is well explained using the recently developed inverse hard and soft acids and bases (IHSAB) model.

References

[1]  Gole, J.L.; Ozdemir, S. Nanostructure directed physisorption vs. chemisorption at semiconductor interfaces: The inverse of the Hard-Soft Acid-Base (HSAB) concept. ChemPhysChem 2010, 11, 2573–2581, doi:10.1002/cphc.201000245.
[2]  Gole, J.L.; Goode, E.C.; Laminack, W. Nanostructure driven analyte-interface electron transduction: A general approach to sensor and microreactor design. ChemPhysChem 2012, 13, 549–561, doi:10.1002/cphc.201100712.
[3]  Gole, J.L.; Laminack, W.I. General Approach to Design and Modeling of Nanostructure Modified Semiconductor and Nanowire Interfaces for Sensor and Microreactor Applications. In Chemical Sensors: Simulation and Modeling. Volume 3—Solid State Sensors; Korotcenkov, G., Ed.; Momentum Press: New York, NY, USA, 2012.
[4]  Gole, J.L.; Lewis, S.E.; de Boer, J.R.; Hesketh, P.J. Sensitive, selective, and analytical improvements to a porous silicon gas sensor. Sens. Actuators B 2005, 110, 54–65, doi:10.1016/j.snb.2005.01.014.
[5]  Ozdemir, S.; Gole, J.L. A phosphine detection matrix using nanostructure modified porous silicon gas sensors. Sens. Actuators B 2010, 151, 274–280, doi:10.1016/j.snb.2010.08.016.
[6]  Ozdemir, S.; Gole, J.L. Porous Silicon Gas Sensors for Room Temperature Detection of Ammonia and Phosphine. In Chemical Sensors 8: Chemical (Gas, Ion, Bio) Sensors and Analytical Systems; ECS Transactions: Pennington, NJ, USA, 2008; Volume 16, pp. 379–387.
[7]  Nozik, A.J. Exciton multipication and relaxation dynamics in quantum dots: Applications to ultrahigh efficiency solar photon conversion. Inorg. Chem. 2005, 44, 6893–6899, doi:10.1021/ic0508425.
[8]  Laminack, W.I.; Pouse, N.; Gole, J.L. The dynamic interaction of NO2 with a nanostructure modified porous silicon matrix: Acidity, sensor response, and the competition for donor level electrons. ECS J. Solid State Sci. Technol. 2012, 1, Q25–Q34, doi:10.1149/2.002202jss.
[9]  Kottke, P.A.; Federov, A.G.; Gole, J.L. Multiscale Mass Transport in Porous Silicon Gas Sensors. In Modern Aspects of Electrochemistry; Schlesinger, M., Ed.; Springer: New York, NY, USA, 2009; Volume 43, pp. 139–168.
[10]  Gole, J.L.; Laminack, W.I. Nanostructure directed chemical sensing: The IHSAB principle and the dynamics of acid/base-interface interaction. Beilstein J. Nanotechnol. 2013, 4, 20–31, doi:10.3762/bjnano.4.3.
[11]  Pearson, R.G. Hard and soft acids and bases—The evolution of a chemical concept. Coord. Chem. Rev. 1990, 100, 403–425, doi:10.1016/0010-8545(90)85016-L.
[12]  Pearson, R.G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85, 3533–3539, doi:10.1021/ja00905a001.
[13]  Pearson, R.G. Chemical Hardness; John Wiley VCH: Weinheim, Germangy, 1997.
[14]  Pearson, R.G. Chemical hardness and density functional theory. J. Chem. Sci. 2005, 117, 369–377, doi:10.1007/BF02708340.
[15]  Pearson, R.G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740, doi:10.1021/ic00277a030.
[16]  Gole, J.L.; Laminack, W.I. Direct in-situ nitridation of nanostructured metal oxide deposited semiconductor interfaces: The formation of reversibly interacting basic sites. Adv. Funct. Mater. 2013. to be submitted.
[17]  Laminack, W.I.; Thompson, C.; Gole, J.L. Nanostructure directed chemical sensing: The IHSAB principle and sulphur functionalization through the formation of metal oxysulphide sites. Appl. Surf. Sci. 2013. to be submitted.
[18]  Laminack, W.I; Gole, J.L. Light enhanced electron transduction and amplified sensing at a nanostructure modified semiconductor interface. Adv. Funct. Mater. 2013. in press.
[19]  Gole, J.L.; Stout, J.; Burda, C.; Lou, Y.; Chen, X. Highly efficient formation of visible light tunable TiO2 ? xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 2004, 108, 1230–1240.
[20]  Chen, X.; Lou, Y.; Samia, A.C.S.; Burda, C.; Gole, J.L. Formations of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparisons to a commercial nanopowder. Adv. Funct. Mater. 2005, 15, 41–49, doi:10.1002/adfm.200400184.
[21]  Rossi, A.M.; Wang, L.; Reipa, V.; Murphy, E. Porous silicon biosensor for detection of viruses. Biosens. Bioelectron. 2007, 23, 741–745, doi:10.1016/j.bios.2007.06.004.
[22]  Laurie, J.L.; Yang, J.; Weiss, S.M. Size-dependent infiltration and optical detection of nucleic acids in nanoscale pores. IEEE Trans. Nanotechnol. 2010, 9, 596–602, doi:10.1109/TNANO.2010.2055580.
[23]  See for example tables in Lévy-Clément, C. Macro-Porous Micro-Structures cluding Silicon. In Encyclopedia of Electrochemistry, under Semiconductor Nanostructures inEncyclopedi and Photoelectrochemistry; Licht, S., Bard, A., Eds.; Wiley-VCH: Weinheim, Germany, 2002; Volume 6. Chapter 3.2, pp. 185–237.
[24]  Campbell, J.; Corno, J.A.; Larsen, N.; Gole, J.L. Development of porous-silicon-based active microfilters. J. Electrochem. Soc. 2008, 155, D128–D132, doi:10.1149/1.2811868.
[25]  Levy-Clement, C.; Lagoubi, A.; Tomkiewicz, M. Morphology of porous n-type silicon obtained by photoelectrochemical etching I. Correlations with material and etching parameters. J. Electrochem. Soc. 1994, 141, 958–967, doi:10.1149/1.2054865.
[26]  Foell, F.; Christophersen, M.; Carstenson, J.; Hasse, G. Formation and application of porous silicon. Mater. Sci. Eng. 2002, 14, R280.
[27]  Kumar, S.; Fedorov, A.G.; Gole, J.L. Photodegradation of ethylene using visible light responsive surfaces prepared from titania nanoparticle slurries. Appl. Catal. B 2005, 57, 93–107, doi:10.1016/j.apcatb.2004.10.012.
[28]  Ozdemir, S.; Gole, J.L. The potential of porous silicon gas sensors. Curr. Opin. Solid State Mater. Sci. 2007, 11, 92–100.
[29]  Ozdemir, S.; Osburn, T.; Gole, J.L. Nanostructure modified gas sensor detection matrix for NO transient conversion of NO to NO2. J. Electrochem. Soc. 2011, 158, J201–J207, doi:10.1149/1.3583368.
[30]  Ozdemir, S.; Gole, J.L. Novel concept for the formation of sensitive, selective, rapidly responding conductometric sensors. ECS Trans. 2010, 33, 239–244.
[31]  Dixon, D.A.; Gutowski, M. Thermodynamic properties of molecular borane amines and the [BH4?][NH4+] salt for chemical hydrogen storage systems from ab initio electronic structure theory. J. Phys. Chem. A 2005, 109, 5129–5135, doi:10.1021/jp0445627.
[32]  Hunter, E.P.; Lias, S.G. Evaluated gas phase basicities and proton affinities of molecules: An update. J. Phys. Chem. Ref. Data 1998, 27, 413–656, doi:10.1063/1.556018.
[33]  Lias, S.G.; Bartmess, J.E.; Liebman, J.F.; Holmes, J.L.; Levin, R.D.; Mallard, W.G. Gas Phase Ion and Neutral Thermochemistry. Journal of Physical and Chemical Reference Data, Volume 17; American Institute of Physics: College Park, MD, USA, 1988.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133