Macromolecular modification of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF) was done with various proportions of sulfonic acid terminated, hyperbranched polysulfone (HPSU) with a view to prepare ion conducting membranes. The PVDF-co-HFP was first chemically modified by dehydrofluorination and chlorosulfonation in order to make the membrane more hydrophilic as well as to introduce unsaturation, which would allow crosslinking of the PVDF-co-HFP matrix to improve the stability of the membrane. The modified samples were characterized for ion exchange capacity, morphology, and performance. The HPSU modified S-PVDF membrane shows good stability and ionic conductivity of 5.1 mS cm ? 1 at 80 °C and 100% RH for blends containing 20% HPSU, which is higher than the literature values for equivalent blend membranes using Nafion. SEM analysis of the blend membranes containing 15% or more HPSU shows the presence of spherical domains with a size range of 300–800 nm within the membranes, which are believed to be the HPSU-rich area.
References
[1]
Subramania, A.; Kalyana Sundara, N.T.; Sathiya Priya, A.R.; Vijaya Kumar, G. Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. J. Membr. Sci. 2007, 294, 8–15, doi:10.1016/j.memsci.2007.01.025.
[2]
Taguet, A.; Ameduri, B.; Boutevin, B. Grafting of 4-hydroxybenzenesulfonic acid onto commercially available poly(VDF-co-HFP) copolymers for the preparation of membranes. Fuel Cells 2006, 6, 331–339, doi:10.1002/fuce.200600006.
[3]
Taguet, A.; Ameduri, B.; Boutevin, B. Grafting of commercially available amines bearing aromatic rings onto poly(vinylidene-co-hexafluoropropene) copolymers. J. Polym. Sci. A 2006, 44, 1855–1868, doi:10.1002/pola.21295.
[4]
Taguet, A.; Sauguet, L.; Ameduri, B.; Boutevin, B. Fluorinated cotelomers based on vinylidene fluoride (VDF) and hexafluoropropene (HFP): Synthesis, dehydrofluorination and grafting by amine containing an aromatic ring. J. Fluorine Chem. 2007, 128, 619–630, doi:10.1016/j.jfluchem.2007.02.005.
[5]
Liu, D.; Chen, Y.; Zhang, N.; He, X. Controlled grafting of polymer brushes on poly(vinylidene fluoride) films by surface-initiated atom transfer radical polymerization. J. Appl. Polym. Sci. 2006, 101, 3704–3712, doi:10.1002/app.23066.
[6]
Kim, Y.-W.; Lee, D.-K.; Lee, K.-J.; Kim, J.-H. Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes. Eur. Polym. J. 2008, 44, 932–939, doi:10.1016/j.eurpolymj.2007.12.020.
[7]
Yang, Y.; Shi, Z.; Holdcroft, S. Synthesis of sulfonated polysulfone-block-PVDF copolymers: Enhancement of proton conductivity in low ion exchange capacity membranes. Macromolecules 2004, 37, 1678–1681, doi:10.1021/ma035659e.
[8]
Mokrini, A.; Huneault, M.A.; Gerard, P. Partially fluorinated proton exchange membranes based on PVDF-SEBS blends compatibilized with methylmethacrylate block copolymers. J. Membr. Sci. 2006, 283, 74–83, doi:10.1016/j.memsci.2006.06.032.
[9]
Song, M.K.; Kim, Y.T.; Fenton, J.M.; Kunz, H.R.; Rhee, H.W. Chemically-modified Nafion(R)/poly(vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells. J. Power Sources 2003, 117, 14–21, doi:10.1016/S0378-7753(03)00166-6.
[10]
Mokrini, A.; Huneault, M.A. Proton exchange membrane based on PVDF/SEBS blend. J. Power Sources 2006, 154, 51–58, doi:10.1016/j.jpowsour.2005.04.021.
[11]
Xu, H.-P.; Dang, Z.-M. Electrical property and microstructure analysis of poly(vinylidene fluoride)-based composites with different conducting fillers. Chem. Phys. Lett. 2007, 438, 196–202, doi:10.1016/j.cplett.2007.02.076.
[12]
Cho, K.Y.; Eom, J.Y.; Jung, H.Y.; Choi, N.S.; Lee, Y.M.; Park, J.K.; Choi, J.H.; Par, K.W.; Sung, Y.E. Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cell (DMFC). Electrochim. Acta 2004, 50, 583–588, doi:10.1016/j.electacta.2004.03.063.
[13]
Choi, S.; Fu, W.; Ahn, Y.Z.; Jo, Y.R.; Manthiram, A. Nafion-impregnated electrospun polyvinylidene fluoride composite membranes for direct methanol fuel cells. J. Power Sources 2008, 180, 167–171, doi:10.1016/j.jpowsour.2008.02.042.
Fernicola, A.; Navarra, M.A.; Panero, S. Aprotic ionic liquids as electrolyte components in protonic membranes. J. Appl. Electrochem. 2008, 38, 993–996, doi:10.1007/s10800-008-9514-6.
[16]
Manea, C.; Mulder, M. Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications. J. Membr. Sci. 2002, 206, 443–453, doi:10.1016/S0376-7388(01)00787-6.
[17]
Gode, P.; Hult, A.; Jannasch, P.; Johansson, M.; Karlsson, L.E.; Lindbergh, G.; Malmstrom, E.; Sandquist, D. A novel sulfonated dendritic polymer as the acidic component in proton conducting membranes. Solid State Ionics 2006, 177, 787–794, doi:10.1016/j.ssi.2005.12.031.
[18]
Takeuchi, M.; Jikei, M.; Kakimoto, M. Preparation of hyperbranched aromatic poly(ethersulfone)s possessing sulfonic acid terminal groups for polymer electrolyte. Chem. Lett. 2003, 32, 242–243, doi:10.1246/cl.2003.242.
[19]
Takeuchi, M.; Jikei, M.; Kakimoto, M. Preparation of composites of hyperbranched aromatic poly(ethersulfone)s possessing sulfonic acid terminal groups and epoxy resin for polymer electrolyte. High Perform. Polym. 2003, 15, 219–228, doi:10.1177/0954008303015002006.
[20]
Konkolewicz, D.; Gray-Weale, A.A.; Gilbert, R.G. Molecular weight distributions from size separation data for hyperbranched polymers. J. Polym. Sci. A 2007, 45, 3112–3115, doi:10.1002/pola.22059.
[21]
Matsumoto, K.; Ueda, M. Synthesis of hyperbranched aromatic poly(ether sulfone) with sulfonyl chloride terminal group. Chem. Lett. 2006, 35, 1196–1197, doi:10.1246/cl.2006.1196.
[22]
Grunzinger, S.J.; Watanabe, M.; Fukagawa, K.; Kikuchi, R.; Tominaga, Y.; Hayakawa, T.; Kakimoto, M. Hyperbranched-linear poly(ether sulfone) blend films for proton exchange membranes. J. Power Sources 2008, 175, 120–126, doi:10.1016/j.jpowsour.2007.09.020.
[23]
Duncan, A.J.; Leo, D.J.; Long, T.E. Synthesis of highly branched sulfonated polysulfones for high performance electromechanical transducers. Polym. Prepr. 2007, 48, 853–854.
[24]
Himmelberg, P.; Fossum, E. Development of an efficient route to hyperbranched poly(arylene ether sulfone)s. J. Polym. Sci. A 2005, 43, 3178–3187, doi:10.1002/pola.20817.
[25]
Mellace, A.; Hanson, J.E.; Griepenburg, J. Hyperbranched poly(phenylene sulfide) and poly(phenylene sulfone). Chem. Mater. 2005, 17, 1812–1817, doi:10.1021/cm048376p.
[26]
Bottino, A.; Capannelli, G.; Comite, A. Novel porous membranes from chemically modified poly(vinylidene fluoride). J. Membr. Sci. 2006, 273, 20–24, doi:10.1016/j.memsci.2005.09.026.
[27]
Bottino, A.; Capannelli, G.; Monticelli, O.; Piaggio, P. Poly(vinylidene fluoride) with improved functionalization for membrane production. J. Membr. Sci. 2000, 166, 23–29, doi:10.1016/S0376-7388(99)00253-7.
[28]
Barona, G.N.B.; Cha, B.J.; Jung, B. Negatively charged poly(vinylidene fluoride) microfiltration membranes by sulfonation. J. Membr. Sci. 2007, 290, 46–54, doi:10.1016/j.memsci.2006.12.013.