A few tightly regulated transport proteins mediate iron absorption across the intestinal epithelium. At the basolateral border of intestinal cells there is one identified transporter, ferroportin, for the transfer of intracellular iron to the vascular system. Here, we investigate the effects of ascorbate (vitamin C) on the regulation of ferroportin in human intestinal Caco-2 cells using ELISA and Western Blot analyses. The results indicate that ferroportin protein levels peak at 100 μM of added ascorbate with an increase of 274% ( p = 0.02). At 150 μM of ascorbate, the increase was only 28% ( p = 0.04), and at 200 μM there was no significant change from the baseline control. In addition, the ascorbate-induced, (at 150 μM) up-regulated ferroportin levels were associated with increased 55Fe transport across the basolateral border (19%, p = 0.03). Ascorbate-induced up-regulation of cellular ferroportin levels (no added iron) was associated with increased levels of the iron regulatory protein IRP2 (230%, p = 0.0009), and the hypoxia-inducible factor HIF2α (69%, p = 0.03). Thus, iron transport across the basal border via ferroportin is influenced by the intracellular status of ascorbate and IRP2 and HIF2α are involved. We discuss possible reasons for the ascorbate-effects and the dependence of cellular growth conditions for iron transport-related protein expression.
References
[1]
Hutton, J.J., Jr.; Tappel1, A.L.; Udenfriend, S. Cofactor and substrate requirements of collagen prolin hydroxylase. Arch. Biochem. Phys. 1967, 118, 231–240, doi:10.1016/0003-9861(67)90302-5.
[2]
Levine, M.; Morita, K.; Heldman, E.; Pollard, H.B. Ascorbic acid regulation of norepinephrine biosynthesis in isolated chromaffin granules from bovine adrenal medulla. J. Biol. Chem. 1985, 260, 15598–15603.
[3]
Hallberg, L.; Brune, M.; Rossander, L. Effect of ascorbic acid on iron absorption from different types of meals. Studies with ascorbic-acid-rich foods and synthetic ascorbic acid given in different amounts with different meals. Hum. Nutr. Appl. Nutr. 1980, 40, 97–113.
[4]
Yun, S.; Habicht, J.-P.; Miller, D.D.; Glahn, R.P. An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenolic compounds on iron bioavailability in humans. J. Nutr. 2004, 134, 2717–2721.
[5]
Thumser, A.E.; Rashed, A.A.; Sharp, P.A.; Lodge, J.K. Ascorbate enhances iron uptake into intestinal cells through formation of a FeCl3–ascorbate complex. Food Chem. 2010, 123, 281–285, doi:10.1016/j.foodchem.2010.04.031.
[6]
Plug, C.M.; Dekker, D.; Bult, A. Complex stability of ferrous ascorbate in aqueous solution and its significance in iron absorption. Pharm. World Sci. 1984, 6, 245–248.
[7]
Scheers, N.; Andlid, T.; Alminger, M.; Sandberg, A.-S. Determination of Fe2+ and Fe3+ in aqueous solutions containing food chelators by differential pulse anodic stripping voltammetry. Electroanalysis 2010, 22, 1090–1096, doi:10.1002/elan.200900533.
[8]
Scheers, N.; Sandberg, A.-S. Iron regulates the uptake of ascorbic acid and the expression of sodium-dependent vitamin C transporter 1 (SVCT1) in human intestinal Caco-2 cells. Br. J. Nutr. 2011, 105, 1734–1740, doi:10.1017/S0007114510005672.
[9]
Scheers, N.; Sandberg, A.-S. Ascorbic acid uptake affects ferritin, Dcytb and Nramp2 expression in Caco-2 cells. Eur. J. Nutr. 2008, 47, 401–408, doi:10.1007/s00394-008-0741-8.
[10]
Cook, J.D.; Reddy, M.B. Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet. Am. J. Clin. Nutr. 2001, 73, 93–98.
[11]
Scheers, N. Regulatory effects of Cu, Zn, and Ca on Fe absorption: The intricate play between nutrient transporters. Nutrients 2013, 5, 957–970, doi:10.3390/nu5030957.
[12]
McKie, A.T.; Marciani, P.; Rolfs, A.; Brennan, K.; Wehr, K.; Barrow, D.; Miret, S.; Bomford, A.; Peters, T.J.; Farzaneh, F.; et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 2000, 5, 299–309, doi:10.1016/S1097-2765(00)80425-6.
[13]
Abboud, S.; Haile, D.J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 2000, 275, 19906–19912, doi:10.1074/jbc.M000713200.
[14]
Walden, W.E.; Selezneva, A.I.; Dupuy, J.; Volbeda, A.; Fontecilla-Camps, J.C.; Theil, E.C.; Volz, K. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 2006, 314, 1903–1908, doi:10.1126/science.1133116.
[15]
Vashisht, A.A.; Zumbrennen, K.B.; Huang, X.; Powers, D.N.; Durazo, A.; Sun, D.; Bhaskaran, N.; Persson, A.; Uhlen, M.; Sangfelt, O.; et al. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 2009, 326, 718–721, doi:10.1126/science.1176333.
[16]
Salahudeen, A.A.; Thompson, J.W.; Ruiz, J.C.; Ma, H.-W.; Kinch, L.N.; Li, Q.; Grishin, N.V.; Bruick, R.K. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 2009, 326, 722–726, doi:10.1126/science.1176326.
[17]
Scheers, N.M.; Hoffmann, K.B.; Sandberg, A.-S. The iron transporter ferroportin is regulated by ascorbate. FASEB J. 2012, 26, 641.20.
[18]
Margolis, S.; Paule, R.C.; Ziegler, R.G. Ascorbic and dehydroascorbic acids measured in plasma preserved with dithiothreitol or metaphosphoric acid. Clin. Chem. 1990, 36, 1750–1755.
[19]
Aguirre, P.; Mena, N.; Tapia, V.; Arredondo, M.; Nú?ez, M.T. Iron homeostasis in neuronal cells: A role for IREG1. BMC Neurosci. 2005, 6, 3, doi:10.1186/1471-2202-6-3.
[20]
Martini, L.A.; Tchack, L.; Wood, R.J. Iron treatment downregulates DMT1 and IREG1 mRNA expression in Caco-2 Cells. J. Nutr. 2002, 132, 693–696.
[21]
Latunde-Dada, G.O.; van der Westhuizen, J.; Vulpe, C.D.; Anderson, G.J.; Simpson, R.J.; McKie, A.T. Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism. Blood Cells Mol. Dis. 2002, 29, 356–360, doi:10.1006/bcmd.2002.0574.
[22]
Lane, D.J.; Robinson, S.R.; Czerwinska, H.; Bishop, G.M.; Lawen, A. Two routes of iron accumulation in astrocytes: Ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron. Biochem. J. 2010, 432, 123–132, doi:10.1042/BJ20101317.
[23]
Zumbrennen, K.B.; Wallander, M.L.; Romney, S.J.; Leibold, E.A. Cysteine oxidation regulates the RNA-binding activity of iron regulatory protein 2. Mol. Cell. Biol. 2009, 29, 2219–2229, doi:10.1128/MCB.00004-09.
[24]
Lane, D., Jr.; Chikhani, S.; Richardson, V.; Richardson, D.R. Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism. Biochim. Biophys. Acta 2013, 1833, 1527–1541.
[25]
Taylor, M.; Qu, A.; Anderson, E.R.; Matsubara, T.; Martin, A.; Gonzalez, F.J.; Shah, Y.M. Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 2011, 140, 2044–2055, doi:10.1053/j.gastro.2011.03.007.