全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pathogens  2013 

Involvement of Endogenous Retroviruses in Prion Diseases

DOI: 10.3390/pathogens2030533

Keywords: prion diseases, Creutzfeldt-Jakob disease (CJD), endogenous retroviruses (ERVs)

Full-Text   Cite this paper   Add to My Lib

Abstract:

For millions of years, vertebrates have been continuously exposed to infection by retroviruses. Ancient retroviral infection of germline cells resulted in the formation and accumulation of inherited retrovirus sequences in host genomes. These inherited retroviruses are referred to as endogenous retroviruses (ERVs), and recent estimates have revealed that a significant portion of animal genomes is made up of ERVs. Although various host factors have suppressed ERV activation, both positive and negative functions have been reported for some ERVs in normal and abnormal physiological conditions, such as in disease states. Similar to other complex diseases, ERV activation has been observed in prion diseases, and this review will discuss the potential involvement of ERVs in prion diseases.

References

[1]  Prusiner, S.B. Prion biology and diseases, 2nd ed. ed.; Cold Spring Harbor Laboratory Press: New York, USA, 2004.
[2]  Prusiner, S.B. Shattuck lecture—neurodegenerative diseases and prions. N. Engl. J. Med. 2001, 344, 1516–1526, doi:10.1056/NEJM200105173442006.
[3]  Puoti, G.; Bizzi, A.; Forloni, G.; Safar, J.G.; Tagliavini, F.; Gambetti, P. Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol. 2012, 11, 618–628.
[4]  Büeler, H.; Aguzzi, A.; Sailer, A.; Greiner, R.A.; Autenried, P.; Aguet, M.; Weissmann, C. Mice devoid of PrP are resistant to scrapie. Cell 1993, 73, 1339–1347, doi:10.1016/0092-8674(93)90360-3.
[5]  Makarava, N.; Kovacs, G.G.; Bocharova, O.; Savtchenko, R.; Alexeeva, I.; Budka, H.; Rohwer, R.G.; Baskakov, I.V. Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol. 2010, 119, 177–187, doi:10.1007/s00401-009-0633-x.
[6]  Wang, F.; Wang, X.; Yuan, C.G.; Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 2010, 327, 1132–1135, doi:10.1126/science.1183748.
[7]  Caughey, B.; Baron, G.S. Prions and their partners in crime. Nature 2006, 443, 803–810, doi:10.1038/nature05294.
[8]  Deleault, N.R.; Lucassen, R.W.; Supattapone, S. RNA molecules stimulate prion protein conversion. Nature 2003, 425, 717–720, doi:10.1038/nature01979.
[9]  Silva, J.L.; Lima, L.M.; Foguel, D.; Cordeiro, Y. Intriguing nucleic-acid-binding features of mammalian prion protein. Trends Biochem. Sci. 2008, 33, 132–140.
[10]  Ma, J. The role of cofactors in prion propagation and infectivity. PLoS Pathog. 2012, 8, e1002589, doi:10.1371/journal.ppat.1002589.
[11]  Mays, C.E.; Ryou, C. Plasminogen: A cellular protein cofactor for PrPSc propagation. Prion 2011, 5, 22–27, doi:10.4161/pri.5.1.14460.
[12]  James, T.L.; Liu, H.; Ulyanov, N.B.; Farr-Jones, S.; Zhang, H.; Donne, D.G.; Kaneko, K.; Groth, D.; Mehlhorn, I.; Prusiner, S.B.; Cohen, F.E. Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc. Natl. Acad. Sci. USA 1997, 94, 10086–10091, doi:10.1073/pnas.94.19.10086.
[13]  Boeke, J.D.; Stoye, J.P. Retrotransposons, Endogenous Retroviruses, and the Evolution of Retroelements. In Retroviruses; Coffin, J.M., Hughes, S.H., Varmus, H.E., Eds.; Cold Spring Harbor Laboratory Press: New York, USA, 1997.
[14]  Bannert, N.; Kurth, R. Retroelements and the human genome: new perspectives on an old relation. Proc. Natl. Acad. Sci. USA 2004, 101, 14572–14579, doi:10.1073/pnas.0404838101.
[15]  Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 2001, 420, 520–562.
[16]  Jern, P.; Sperber, G.O.; Blomberg, J. Use of endogenous retroviral sequences (ERVs) and structural markers for retroviral phylogenetic inference and taxonomy. Retrovirology 2005, 2, 50, doi:10.1186/1742-4690-2-50.
[17]  Blomberg, J.; Benachenhou, F.; Blikstad, V.; Sperber, G.; Mayer, J. Classification and nomenclature of endogenous retroviral sequences (ERVs): problems and recommendations. Gene 2009, 448, 115–123, doi:10.1016/j.gene.2009.06.007.
[18]  Stocking, C.; Kozak, C.A. Murine endogenous retroviruses. Cell. Mol. Life. Sci. 2008, 65, 3383–3398, doi:10.1007/s00018-008-8497-0.
[19]  Belshaw, R.; Pereira, V.; Katzourakis, A.; Talbot, G.; Paces, J.; Burt, A.; Tristem, M. Long-term reinfection of the human genome by endogenous retroviruses. Proc. Natl. Acad. Sci. USA 2004, 101, 4894–4899.
[20]  Stoye, J.P. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat. Rev. Microbiol. 2012, 10, 395–406.
[21]  Maksakova, I.A.; Romanish, M.T.; Gagnier, L.; Dunn, C.A.; van de Lagemaat, L.N.; Mager, D.L. Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet. 2006, 2, e2, doi:10.1371/journal.pgen.0020002.
[22]  Yoder, J.A.; Walsh, C.P.; Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends. Genet. 1997, 13, 335–340, doi:10.1016/S0168-9525(97)01181-5.
[23]  Rowe, H.M.; Trono, D. Dynamic control of endogenous retroviruses during development. Virology 2011, 411, 273–287, doi:10.1016/j.virol.2010.12.007.
[24]  Sheehy, A.M.; Gaddis, N.C.; Choi, J.D.; Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002, 418, 646–650, doi:10.1038/nature00939.
[25]  Malim, M.H. APOBEC proteins and intrinsic resistance to HIV-1 infection. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009, 364, 675–687, doi:10.1098/rstb.2008.0185.
[26]  Chiu, Y.L.; Greene, W.C. The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu. Rev. Immunol. 2008, 26, 317–353, doi:10.1146/annurev.immunol.26.021607.090350.
[27]  Stremlau, M.; Owens, C.M.; Perron, M.J.; Kiessling, M.; Autissier, P.; Sodroski, J. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004, 427, 848–853, doi:10.1038/nature02343.
[28]  Huthoff, H.; Towers, G.J. Restriction of retroviral replication by APOBEC3G/F and TRIM5alpha. Trends Microbiol. 2008, 16, 612–619, doi:10.1016/j.tim.2008.08.013.
[29]  Copeland, N.G.; Hutchison, K.W.; Jenkins, N.A. Excision of the DBA ecotropic provirus in dilute coat-color revertants of mice occurs by homologous recombination involving the viral LTRs. Cell 1983, 33, 379–387, doi:10.1016/0092-8674(83)90419-1.
[30]  Mi, S.; Lee, X.; Li, X.; Veldman, G.M.; Finnerty, H.; Racie, L.; LaVallie, E.; Tang, X.Y.; Edouard, P.; Howes, S.; Keith, J.C., Jr.; McCoy, J.M. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 2000, 403, 785–789, doi:10.1038/35001608.
[31]  Dupressoir, A.; Vernochet, C.; Bawa, O.; Harper, F.; Pierron, G.; Opolon, P.; Heidmann, T. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc. Natl. Acad. Sci. USA 2009, 106, 12127–12132.
[32]  Odaka, T.; Ikeda, H.; Akatsuka, T. Restricted expression of endogenous N-tropic XC-positive leukemia virus in hybrids between G and AKR mice: an effect of the Fv-4r gene. Int. J. Cancer 1980, 25, 757–762, doi:10.1002/ijc.2910250611.
[33]  Best, S.; Le Tissier, P.; Towers, G.; Stoye, J.P. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 1996, 382, 826–829, doi:10.1038/382826a0.
[34]  Coffin, J.M.; Hughes, S.H.; Varmus, H.E. Retroviruses; Cold Spring Harbor Laboratory Press: New York, USA, 1997.
[35]  Kurth, R.; Bannert, N. Retroviruses: Molecular Biology, Genomics and Pathogenesis; Caister Academic Press: Norwich, UK, 2010.
[36]  L?wer, R. The pathogenic potential of endogenous retroviruses: facts and fantaisies. Trends. Microbiol. 1999, 7, 350–356, doi:10.1016/S0966-842X(99)01565-6.
[37]  Nakagawa, K.; Harrison, L.C. The potential roles of endogenous retroviruses in autoimmunity. Immunol. Rev. 1996, 152, 193–236, doi:10.1111/j.1600-065X.1996.tb00917.x.
[38]  Ruprecht, K.; Mayer, J.; Sauter, M.; Roemer, K.; Mueller-Lantzsch, N. Endogenous retroviruses and cancer. Cell. Mol. Life. Sci. 2008, 65, 3366–3382, doi:10.1007/s00018-008-8496-1.
[39]  Pothlichet, J.; Heidmann, T.; Mangeney, M. A recombinant endogenous retrovirus amplified in a mouse neuroblastoma is involved in tumor growth in vivo. Int. J. Cancer 2006, 119, 815–822, doi:10.1002/ijc.21935.
[40]  Pothlichet, J.; Mangeney, M.; Heidmann, T. Mobility and integration sites of a murine C57BL/6 melanoma endogenous retrovirus involved in tumor progression in vivo. Int. J. Cancer 2006, 119, 1869–1877, doi:10.1002/ijc.22066.
[41]  Wang, X.Y.; Steelman, L.S.; McCubrey, J.A. Abnormal activation of cytokine gene expression by intracisternal type A particle transposition: effects of mutations that result in autocrine growth stimulation and malignant transformation. Cytokines Cell. Mol. Ther. 1997, 3, 3–19.
[42]  Harris, J.R. Placental endogenous retrovirus (ERV): structural, functional, and evolutionary significance. Bioessays 1998, 20, 307–316, doi:10.1002/(SICI)1521-1878(199804)20:4<307::AID-BIES7>3.0.CO;2-M.
[43]  Buscher, K.; Trefzer, U.; Hofmann, M.; Sterry, W.; Kurth, R.; Denner, J. Expression of human endogenous retrovirus K in melanomas and melanoma cell lines. Cancer Res. 2005, 65, 4172–4180, doi:10.1158/0008-5472.CAN-04-2983.
[44]  Muster, T.; Waltenberger, A.; Grassauer, A.; Hirschl, S.; Caucig, P.; Romirer, I.; Fodinger, D.; Seppele, H.; Schanab, O.; Magin-Lachmann, C.; L?wer, R.; Jansen, B.; Pehamberger, H.; Wolff, K. An endogenous retrovirus derived from human melanoma cells. Cancer Res. 2003, 63, 8735–8741.
[45]  Sauter, M.; Schommer, S.; Kremmer, E.; Remberger, K.; Dolken, G.; Lemm, I.; Buck, M.; Best, B.; Neumann-Haefelin, D.; Mueller-Lantzsch, N. Human endogenous retrovirus K10: expression of Gag protein and detection of antibodies in patients with seminomas. J. Virol. 1995, 69, 414–421.
[46]  Bieda, K.; Hoffmann, A.; Boller, K. Phenotypic heterogeneity of human endogenous retrovirus particles produced by teratocarcinoma cell lines. J. Gen. Virol. 2001, 82, 591–596.
[47]  Galli, U.M.; Sauter, M.; Lecher, B.; Maurer, S.; Herbst, H.; Roemer, K.; Mueller-Lantzsch, N. Human endogenous retrovirus rec interferes with germ cell development in mice and may cause carcinoma in situ, the predecessor lesion of germ cell tumors. Oncogene 2005, 24, 3223–3228, doi:10.1038/sj.onc.1208543.
[48]  Buscher, K.; Hahn, S.; Hofmann, M.; Trefzer, U.; Ozel, M.; Sterry, W.; Lower, J.; Lower, R.; Kurth, R.; Denner, J. Expression of the human endogenous retrovirus-K transmembrane envelope, Rec and Np9 proteins in melanomas and melanoma cell lines. Melanoma Res. 2006, 16, 223–234, doi:10.1097/01.cmr.0000215031.07941.ca.
[49]  Bjerregaard, B.; Holck, S.; Christensen, I.J.; Larsson, L.I. Syncytin is involved in breast cancer-endothelial cell fusions. Cell. Mol. Life Sci. 2006, 63, 1906–1911, doi:10.1007/s00018-006-6201-9.
[50]  Strick, R.; Ackermann, S.; Langbein, M.; Swiatek, J.; Schubert, S.W.; Hashemolhosseini, S.; Koscheck, T.; Fasching, P.A.; Schild, R.L.; Beckmann, M.W.; Strissel, P.L. Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J. Mol. Med. 2007, 85, 23–38.
[51]  Antony, J.M.; van Marle, G.; Opii, W.; Butterfield, D.A.; Mallet, F.; Yong, V.W.; Wallace, J.L.; Deacon, R.M.; Warren, K.; Power, C. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat. Neurosci. 2004, 7, 1088–1095, doi:10.1038/nn1319.
[52]  Karlsson, H.; Bachmann, S.; Schr?der, J.; McArthur, J.; Torrey, E.F.; Yolken, R.H. Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc. Natl. Acad. Sci. USA 2001, 98, 4634–4639, doi:10.1073/pnas.061021998.
[53]  Frank, O.; Giehl, M.; Zheng, C.; Hehlmann, R.; Leib-M?sch, C.; Seifarth, W. Human endogenous retrovirus expression profiles in samples from brains of patients with schizophrenia and bipolar disorders. J. Virol. 2005, 79, 10890–10901, doi:10.1128/JVI.79.17.10890-10901.2005.
[54]  Balada, E.; Ordi-Ros, J.; Vilardell-Tarrés, M. Molecular mechanisms mediated by human endogenous retroviruses (HERVs) in autoimmunity. Rev. Med. Virol. 2009, 19, 273–286, doi:10.1002/rmv.622.
[55]  Jeong, B.H.; Jin, J.K.; Choi, E.K.; Lee, E.Y.; Meeker, H.C.; Kozak, C.A.; Carp, R.I.; Kim, Y.S. Analysis of the expression of endogenous murine leukemia viruses in the brains of senescence-accelerated mice (SAMP8) and the relationship between expression and brain histopathology. J. Neuropathol. Exp. Neurol. 2002, 61, 1001–1012.
[56]  Kim, B.H.; Meeker, H.C.; Shin, H.Y.; Kim, J.I.; Jeong, B.H.; Choi, E.K.; Carp, R.I.; Kim, Y.S. Physiological properties of astroglial cell lines derived from mice with high (SAMP8) and low (SAMR1, ICR) levels of endogenous retrovirus. Retrovirology 2008, 5, 104, doi:10.1186/1742-4690-5-104.
[57]  Carp, R.I.; Meeker, H.; Caruso, V.; Sersen, E. Scrapie strain-specific interactions with endogenous murine leukaemia virus. J. Gen. Virol. 1999, 80, 5–10.
[58]  Carp, R.I.; Meeker, H.C.; Kozlowski, P.; Sersen, E.A. An endogenous retrovireuses and exogenous scrapie in a mouse model of aging. Trends. Microbiol. 2000, 8, 39–42, doi:10.1016/S0966-842X(99)01648-0.
[59]  Carp, R.I.; Meeker, H.; Sersen, E.; Kozlowski, P. Analysis of the incubation periods, induction of obesity and histopathological changes in senescence-prone and senescence-resistant mice infected with various scrapie strains. J. Gen. Virol. 1998, 78, 2863–2869.
[60]  Lee, K.H.; Jeong, B.H.; Jin, J.K.; Meeker, H.C.; Kim, J.I.; Carp, R.I.; Kim, Y.S. Scrapie infection activates the replication of ecotropic, xenotropic, and polytropic murine leukemia virus (MuLV) in brains and spinal cords of senescence-accelerated mice: implication of MuLV in progression of scrapie pathogenesis. Biochem. Biophys. Res. Commun. 2006, 349, 122–130, doi:10.1016/j.bbrc.2006.08.016.
[61]  Jeong, B.H.; Lee, Y.J.; Carp, R.I.; Kim, Y.S. The prevalence of human endogenous retroviruses in cerebrospinal fluids from patients with sporadic Creutzfeldt-Jakob disease. J. Clin. Virol. 2010, 47, 136–142, doi:10.1016/j.jcv.2009.11.016.
[62]  Greenwood, A.D.; Vincendeau, M.; Schm?dicke, A.C.; Montag, J.; Seifarth, W.; Motzkus, D. Bovine spongiform encephalopathy infection alters endogenous retrovirus expression in distinct brain regions of cynomolgus macaques (Macaca fascicularis). Mol. Neurodegener. 2011, 6, 44, doi:10.1186/1750-1326-6-44.
[63]  Adler, V.; Zeiler, B.; Kryukov, V.; Kascsak, R.; Rubenstein, R.; Grossman, A. Small, highly structured RNAs participate in the conversion of human recombinant PrPSen to PrPRes/ in vitro. J. Mol. Biol. 2003, 332, 47–57, doi:10.1016/S0022-2836(03)00919-7.
[64]  Jeong, B.H.; Kim, N.H.; Jin, J.K.; Choi, J.K.; Lee, Y.J.; Kim, J.I.; Choi, E.K.; Carp, R.I.; Kim, Y.S. Reduction of prion infectivity and levels of scrapie prion protein by lithium aluminum hydride: implications for RNA in prion diseases. J. Neuropathol. Exp. Neurol. 2009, 68, 870–879, doi:10.1097/NEN.0b013e3181aeccfb.
[65]  Stanton, J.B.; Knowles, D.P.; O'Rourke, K.I.; Herrmann-Hoesing, L.M.; Mathison, B.A.; Baszler, T.V. Small-ruminant lentivirus enhances PrPSc accumulation in cultured sheep microglial cells. J. Virol. 2008, 82, 9839–9847.
[66]  Leblanc, P.; Alais, S.; Porto-Carreiro, I.; Lehmann, S.; Grassi, J.; Raposo, G.; Darlix, J.L. Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J. 2006, 25, 2674–2685, doi:10.1038/sj.emboj.7601162.
[67]  Ashok, A.; Hegde, R.S. Prions and retroviruses: an endosomal rendezvous? EMBO Rep. 2006, 7, 685–687, doi:10.1038/sj.embor.7400749.
[68]  Lee, Y.J.; Jeong, B.H.; Park, J.B.; Kwon, H.J.; Kim, Y.S.; Kwak, I.S. The prevalence of human endogenous retroviruses in the plasma of major burn patients. Burns 2013, doi:10.1016/j.burns.2012.12.013.
[69]  Brown, D.R. Microglia and prion disease. Microsc. Res. Tech. 2001, 54, 71–80, doi:10.1002/jemt.1122.
[70]  Hur, K.; Kim, J.I.; Choi, S.I.; Choi, E.K.; Carp, R.I.; Kim, Y.S. The pathogenic mechanisms of prion diseases. Mech. Ageing Dev. 2002, 123, 1637–1647, doi:10.1016/S0047-6374(02)00099-4.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133