全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pathogens  2013 

An Emerging Tick-Borne Disease of Humans Is Caused by a Subset of Strains with Conserved Genome Structure

DOI: 10.3390/pathogens2030544

Keywords: anaplasmosis, tick-borne diseases, high-throughput sequencing, pfam01617, msp2/p44, comparative genomics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The prevalence of tick-borne diseases is increasing worldwide. One such emerging disease is human anaplasmosis. The causative organism, Anaplasma phagocytophilum, is known to infect multiple animal species and cause human fatalities in the U.S., Europe and Asia. Although long known to infect ruminants, it is unclear why there are increasing numbers of human infections. We analyzed the genome sequences of strains infecting humans, animals and ticks from diverse geographic locations. Despite extensive variability amongst these strains, those infecting humans had conserved genome structure including the pfam01617 superfamily that encodes the major, neutralization-sensitive, surface antigen. These data provide potential targets to identify human-infective strains and have significance for understanding the selective pressures that lead to emergence of disease in new species.

References

[1]  Patz, J.A.; Olson, S.H.; Uejio, C.K.; Gibbs, H.K. Disease emergence from global climate and land use change. Med. Clin. North Am. 2008, 92, 1473–1491, doi:10.1016/j.mcna.2008.07.007.
[2]  Dumler, J.S.; Choi, K.S.; Garcia-Garcia, J.C.; Barat, N.S.; Scorpio, D.G.; Garyu, J.W.; Grab, D.J.; Bakken, J.S. Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg. Infect. Dis. 2005, 11, 1828–1834, doi:10.3201/eid1112.050898.
[3]  CDC. Statistics and Epidemiology. Annual Cases of Anaplasmosis in the United States, Available online: www.cdc.gov/anaplasmosis/stats/ (accessed on 5 September 2013).
[4]  Dahlgren, F.S.; Mandel, E.J.; Krebs, J.W.; Massung, R.F.; McQuiston, J.H. Increasing incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000–2007. Am. J. Trop. Med. Hyg. 2011, 85, 124–131, doi:10.4269/ajtmh.2011.10-0613.
[5]  Zhang, L.; Wang, G.; Liu, Q.; Chen, C.; Li, J.; Long, B.; Yu, H.; Zhang, Z.; He, J.; Qu, Z.; et al. Molecular analysis of Anaplasma phagocytophilum isolated from patients with febrile diseases of unknown etiology in China. PLoS One 2013, 8, e57155.
[6]  Annen, K.; Friedman, K.; Eshoa, C.; Horowitz, M.; Gottschall, J.; Straus, T. Two cases of transfusion-transmitted Anaplasma phagocytophilum. Am. J. Clin. Pathol. 2012, 137, 562–565, doi:10.1309/AJCP4E4VQQQOZIAQ.
[7]  Jereb, M.; Pecaver, B.; Tomazic, J.; Muzlovic, I.; Avsic-Zupanc, T.; Premru-Srsen, T.; Levicnik-Stezinar, S.; Karner, P.; Strle, F. Severe human granulocytic anaplasmosis transmitted by blood transfusion. Emerg. Infect. Dis. 2012, 18, 1354–1357.
[8]  Massung, R.F.; Priestley, R.A.; Miller, N.J.; Mather, T.N.; Levin, M.L. Inability of a variant strain of Anaplasma phagocytophilum to infect mice. J. Infect. Dis. 2003, 188, 1757–1763, doi:10.1086/379725.
[9]  Massung, R.F.; Mather, T.N.; Levin, M.L. Reservoir competency of goats for the Ap-variant 1 strain of Anaplasma phagocytophilum. Infect. Immun. 2006, 74, 1373–1375, doi:10.1128/IAI.74.2.1373-1375.2006.
[10]  Dunning Hotopp, J.C.; Lin, M.; Madupu, R.; Crabtree, J.; Angiuoli, S.V.; Eisen, J.A.; Seshadri, R.; Ren, Q.; Wu, M.; Utterback, T.R.; et al. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2006, 2, e21, doi:10.1371/journal.pgen.0020021.
[11]  Barbet, A.F.; Meeus, P.F.; Bélanger, M.; Bowie, M.V.; Yi, J.; Lundgren, A.M.; Alleman, A.R.; Wong, S.J.; Chu, F.K.; Munderloh, U.G.; et al. Expression of multiple outer membrane protein sequence variants from a single genomic locus of Anaplasma phagocytophilum. Infect. Immun. 2003, 71, 1706–1718, doi:10.1128/IAI.71.4.1706-1718.2003.
[12]  Lin, Q.; Rikihisa, Y. Establishment of cloned Anaplasma phagocytophilum and analysis of p44 gene conversion within an infected horse and infected SCID mice. Infect. Immun. 2005, 73, 5106–5114, doi:10.1128/IAI.73.8.5106-5114.2005.
[13]  Foley, J.E.; Nieto, N.C.; Barbet, A.F.; Foley, P. Antigen diversity in the parasitic bacterium Anaplasma phagocytophilum arises from selectively-represented, spatially clustered functional pseudogenes. PLoS One 2009, 4, e8265.
[14]  Stuen, S. Anaplasma phagocytophilum—The most widespread tick-borne infection in animals in Europe. Vet. Res. Commun. 2007, 31, 79–84, doi:10.1007/s11259-007-0071-y.
[15]  Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131, doi:10.1073/pnas.0906412106.
[16]  Barbet, A.F.; Lundgren, A.M.; Alleman, A.R.; Stuen, S.; Bj?ersdorff, A.; Brown, R.N.; Drazenovich, N.L.; Foley, J.E. Structure of the expression site reveals global diversity in MSP2 (P44) variants in Anaplasma phagocytophilum. Infect. Immun. 2006, 74, 6429–6437, doi:10.1128/IAI.00809-06.
[17]  Al-Khedery, B.; Lundgren, A.M.; Stuen, S.; Granquist, E.G.; Munderloh, U.G.; Nelson, C.M.; Alleman, A.R.; Mahan, S.M.; Barbet, A.F. Structure of the type IV secretion system in different strains of Anaplasma phagocytophilum. BMC Genomics 2012, 13, e678, doi:10.1186/1471-2164-13-678.
[18]  Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, W181–W184, doi:10.1093/nar/gkn179.
[19]  Grant, J.R.; Stothard, P. Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genomics 2012, 13, e202, doi:10.1186/1471-2164-13-202.
[20]  Dark, M.J.; Al-Khedery, B.; Barbet, A.F. Multistrain genome analysis identifies candidate vaccine antigens of Anaplasma marginale. Vaccine 2011, 29, 4923–4932, doi:10.1016/j.vaccine.2011.04.131.
[21]  Casey, A.N.J.; Birtles, R.J.; Radford, A.D.; Bown, K.J.; French, N.P.; Woldehiwet, Z.; Ogden, N.H. Groupings of highly similar major surface protein (p44)-encoding paralogues: A potential index of genetic diversity amongst isolates of Anaplasma phagocytophilum. Microbiology 2004, 150, 727–734, doi:10.1099/mic.0.26648-0.
[22]  Gaowa; Wuritu; Wu, D.; Yoshikawa, Y.; Ohashi, N.; Kawamori, F.; Sugiyama, K.; Ohtake, M.; Ohashi, M.; Yamamoto, S.; et al. Dection and characterization of p44/msp2 transcript variants of Anaplasma phagocytophilum from naturally infected ticks and wild deer in Japan. Jpn. J. Infect. Dis. 2012, 65, 79–83.
[23]  Wuritu; Gaowa; Kawamori, F.; Aochi, M.; Masuda, T.; Ohashi, N. Characterization of p44/msp2 multigene family of Anaplasma phagocytophilum from two different tick species, Ixodes persulcatus and Ixodes ovatus, in Japan. Jpn. J. Infect. Dis. 2009, 62, 142–145.
[24]  Ohashi, N.; Gaowa; Wuritu; Kawamori, F.; Wu, D.; Yoshikawa, Y.; Chiya, S.; Fukunaga, K.; Funato, T.; Shiojiri, M.; et al. Human granulocytic anaplasmosis, Japan. Emerg. Infect. Dis. 2013, 19, 289–292, doi:10.3201/eid1902.120855.
[25]  Caspersen, K.; Park, J.H.; Patil, S.; Dumler, J.S. Genetic variability and stability of Anaplasma phagocytophila msp2 (p44). Infect. Immun. 2002, 70, 1230–1234, doi:10.1128/IAI.70.3.1230-1234.2002.
[26]  Campanella, J.J.; Bitincka, L.; Smalley, J. MatGAT: An application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 2003, 4, e29, doi:10.1186/1471-2105-4-29.
[27]  Bowman, D.; Little, S.E.; Lorentzen, L.; Shields, J.; Sullivan, M.P.; Carlin, E.P. Prevalence and geographic distribution of Dirofilaria immitis, Borrelia burgdorferi, Ehrlichia canis, and Anaplasma phagocytophilum in dogs in the United States: Results of a national clinic-based serologic survey. Vet. Parasitol. 2009, 160, 138–148, doi:10.1016/j.vetpar.2008.10.093.
[28]  Kim, H.Y.; Rikihisa, Y. Characterization of monoclonal antibodies to the 44-kilodalton major outer membrane protein of the human granulocytic ehrlichiosis agent. J. Clin. Microbiol. 1998, 36, 3278–3284.
[29]  Wang, X.; Kikuchi, T.; Rikihisa, Y. Two monoclonal antibodies with defined epitopes of P44 major surface proteins neutralize Anaplasma phagocytophilum by distinct mechanisms. Infect. Immun. 2006, 74, 1873–1882, doi:10.1128/IAI.74.3.1873-1882.2006.
[30]  Foley, J.E.; Nieto, N.C.; Massung, R.; Barbet, A.; Madigan, J.; Brown, R.N. Distinct ecologically relevant strains of Anaplasma phagocytophilum. Emerg. Infect. Dis. 2009, 15, 842–843, doi:10.3201/eid1505.081502.
[31]  The NCBI Bioproject Portal. Available online: www.ncbi.nlm.nih.gov/bioproject (accessed on 5 September 2013).

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133