全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pathogens  2013 

Culture-Independence for Surveillance and Epidemiology

DOI: 10.3390/pathogens2030556

Keywords: culture-independence, next generation sequencing, diagnostics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Culture-independent methods in microbiology (quantitative PCR (qPCR), sequencing, microarrays, direct from sample matrix assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS), etc.) are disruptive technology. Rather than providing the same results as culture-based methods more quickly, more cheaply or with improved accuracy, they reveal an unexpected diversity of microbes and illuminate dark corners of undiagnosed disease. At times, they overturn existing definitions of presumably well-understood infections, generating new requirements for clinical diagnosis, surveillance and epidemiology. However, current diagnostic microbiology, infection control and epidemiology rest principally on culture methods elegantly optimized by clinical laboratorians. The clinical significance is interwoven; the new methods are out of context, difficult to interpret and impossible to act upon. Culture-independent diagnostics and surveillance methods will not be deployed unless the reported results can be used to select specific therapeutics or infection control measures. To cut the knots surrounding the adoption of culture-independent methods in medical microbiology, culture-dependent methods should be supported by consistent culture-independent methods providing the microbial context. This will temper existing biases and motivate appropriate scrutiny of the older methods and results.

References

[1]  Wagner, M.; Amann, R.; Lemmer, H.; Schleifer, K.H. Probing activated sludge with oligonucleotides specific for proteobacteria: Inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 1993, 59, 1520–1525.
[2]  Versalovic, J. Manual of Clinical Microbiology; ASM Press: Washington, DC, USA, 2011.
[3]  Lester, J.N.; Perry, R.; Dadd, A.H. Cultivation of a mixed bacterial population of sewage origin in the chemostat. Water Res. 1979, 13, 545–551, doi:10.1016/0043-1354(79)90050-2.
[4]  Ordal, E.J.; Palmer, F.E. Steady-state enrichment cultures of bacteria. In Continuous Culture of Microorganisms; Malek, I., Ed.; Academic Press: New York, NY, USA, 1964; pp. 133–139.
[5]  Kogure, K.; Simidu, U.; Taga, N. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 1979, 25, 415–420, doi:10.1139/m79-063.
[6]  Austin, B.; Goodfellow, M.; Dickinson, C.H. Numerical taxonomy of phylloplane bacteria isolated from Lolium perenne. J. Gen. Microbiol. 1978, 104, 139–155, doi:10.1099/00221287-104-1-139.
[7]  Staley, J.T.; Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 1985, 39, 321–346, doi:10.1146/annurev.mi.39.100185.001541.
[8]  Woese, C.R.; Fox, G.E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. USA 1977, 74, 5088–5090, doi:10.1073/pnas.74.11.5088.
[9]  Heineman, H.S.; Chawla, J.K.; Lopton, W.M. Misinformation from sputum cultures without microscopic examination. J. Clin. Microbiol. 1977, 6, 518–527.
[10]  Allen, E.E.; Banfield, J.F. Community genomics in microbial ecology and evolution. Nat. Rev. Microbiol. 2005, 3, 489–498, doi:10.1038/nrmicro1157.
[11]  Amann, R.I.; Binder, B.J.; Olson, R.J.; Chisholm, S.W.; Devereux, R.; Stahl, D.A. Combination of 16s ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Appl. Environ. Microbiol. 1990, 56, 1919–1925.
[12]  Schloss, P.D.; Handelsman, J. Metagenomics for studying unculturable microorganisms: Cutting the Gordian knot. Genome Biol. 2005, 6, e229, doi:10.1186/gb-2005-6-8-229.
[13]  Special Issue: The Gut Microbiota. Science 2012, 336, 1197–1352.
[14]  Fodor, A.A.; Desantis, T.Z.; Wylie, K.M.; Badger, J.H.; Ye, Y.; Hepburn, T.; Hu, P.; Sodergren, E.; Liolios, K.; Huot-Creasy, H.; et al. The “most wanted” taxa from the human microbiome for whole genome sequencing. PLoS One 2012, 7, e41294, doi:10.1371/journal.pone.0041294.
[15]  Goodman, A.L.; Kallstrom, G.; Faith, J.J.; Reyes, A.; Moore, A.; Dantas, G.; Gordon, J.I. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl. Acad. Sci. USA 2011, 108, 6252–6257.
[16]  Tuttle, M.S.; Mostow, E.; Mukherjee, P.; Hu, F.Z.; Melton-Kreft, R.; Ehrlich, G.D.; Dowd, S.E.; Ghannoum, M.A. Characterization of bacterial communities in venous insufficiency wounds by use of conventional culture and molecular diagnostic methods. J. Clin. Microbiol. 2011, 49, 3812–3819, doi:10.1128/JCM.00847-11.
[17]  Shade, A.; Hogan, C.S.; Klimowicz, A.K.; Linske, M.; McManus, P.S.; Handelsman, J. Culturing captures members of the soil rare biosphere. Environ. Microbiol. 2012, 14, 2247–2252, doi:10.1111/j.1462-2920.2012.02817.x.
[18]  Smith, C.J.; Osborn, A.M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 2009, 67, 6–20, doi:10.1111/j.1574-6941.2008.00629.x.
[19]  Harris, K.A.; Hartley, J.C. Development of broad-range 16S rDNA PCR for use in the routine diagnostic clinical microbiology service. J. Med. Microbiol. 2003, 52, 685–691.
[20]  Barczak, A.K.; Gomez, J.E.; Kaufmann, B.B.; Hinson, E.R.; Cosimi, L.; Borowsky, M.L.; Hung, D.T. RNA signatures allow rapid identification of pathogens and antibiotic susceptibilities. Proc. Natl. Acad. Sci. USA 2012, 109, 6217–6222.
[21]  Peter, H.; Berggrav, K.; Thomas, P.; Pfeifer, Y.; Witte, W.; Templeton, K.; Bachmann, T.T. Direct detection and genotyping of Klebsiella pneumoniae carbapenemases from urine by use of a new DNA microarray test. J. Clin. Microbiol. 2012, 50, 3990–3998, doi:10.1128/JCM.00990-12.
[22]  Ballarini, A.; Segata, N.; Huttenhower, C.; Jousson, O. Simultaneous quantification of multiple bacteria by the BactoChip microarray designed to target species-specific marker genes. PLoS One 2013, 8, e55764.
[23]  Morgan, M.A. Ten years of experience with peptide nucleic acid fluorescent in situ hybridization in the clinical microbiology laboratory. Clin. Microbiol. Newsl. 2013, 35, 79–83, doi:10.1016/j.clinmicnews.2013.04.002.
[24]  Loonen, A.J.M.; Jansz, A.R.; Stalpers, J.; Wolffs, P.F.G.; van den Brule, A.J.C. An evaluation of three processing methods and the effect of reduced culture times for faster direct identification of pathogens from BacT/ALERT blood cultures by MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1575–1583, doi:10.1007/s10096-011-1480-y.
[25]  Chen, J.H.; Ho, P.L.; Kwan, G.S.; She, K.K.; Siu, G.K.; Cheng, V.C.; Yam, W.C. Direct bacterial identification in positive blood cultures using two commercial MALDI-TOF mass spectrometry systems. J. Clin. Microbiol. 2013, doi:10.1128/JCM.03259-12.
[26]  K?hling, H.L.; Bittner, A.; Müller, K.D.; Buer, J.; Becker, M.; Rübben, H.; Mosel, F. Direct identification of bacteria in urine samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and relevance of defensins as interfering factors. J. Med. Microbiol. 2012, 61, 339–344, doi:10.1099/jmm.0.032284-0.
[27]  Joo, E.J.; Kang, C.I.; Ha, Y.E.; Park, S.Y.; Kang, S.J.; Wi, Y.M.; Lee, N.Y.; Chung, D.R.; Peck, K.R.; Song, J.H. Impact of inappropriate empiric antimicrobial therapy on outcome in Pseudomonas aeruginosa bacteraemia: A stratified analysis according to sites of infection. Infection 2011, 39, 309–318, doi:10.1007/s15010-011-0124-6.
[28]  Davis, M.E.; Anderson, D.J.; Sharpe, M.; Chen, L.F.; Drew, R.H. Constructing unit-specific empiric treatment guidelines for catheter-related and primary bacteremia by determining the likelihood of inadequate therapy. Infect. Control. Hosp. Epidemiol. 2012, 33, 416–420, doi:10.1086/664756.
[29]  Ehrlich, G.D.; DeMeo, P.; Palmer, M.; Sauber, T.J.; Altman, D.; Altman, G.; Stoodley, P. Culture-negative infections in orthopedic surgery. In Culture Negative Orthopedic Biofilm Infections; Springer: Berlin/Heidelberg, Germany, 2012; pp. 17–27.
[30]  Ehrlich, G.D.; DeMeo, P.J.; Costerton, J.W. The problem of culture-negative infections. In Culture Negative Orthopedic Biofilm Infections; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–15.
[31]  Al Masalma, M.; Armougom, F.; Scheld, W.M.; Dufour, H.; Roche, P.H.; Drancourt, M.; Raoult, D. The expansion of the microbiological spectrum of brain abscesses with use of multiple 16S ribosomal DNA sequencing. Clin. Infect. Dis. 2009, 48, 1169–1178, doi:10.1086/597578.
[32]  Al Masalma, M.; Lonjon, M.; Richet, H.; Dufour, H.; Roche, P.H.; Drancourt, M.; Fournier, P.E. Metagenomic analysis of brain abscesses identifies specific bacterial associations. Clin. Infect. Dis. 2012, 54, 202–210, doi:10.1093/cid/cir797.
[33]  Siqueira, J.F., Jr.; R??as, I.N. As-yet-uncultivated oral bacteria: Breadth and association with oral and extra-oral diseases. J. Oral Microbiol. 2013, doi:10.3402/jom.v5i0.21077.
[34]  Rogers, G.B.; Marsh, P.; Stressmann, A.F.; Allen, C.E.; Daniels, T.V.; Carroll, M.P.; Bruce, K.D. The exclusion of dead bacterial cells is essential for accurate molecular analysis of clinical samples. Clin. Microbiol. Infect. 2010, 16, 1656–1658, doi:10.1111/j.1469-0691.2010.03189.x.
[35]  Yao, G.J.; Gong, J.; Zhang, G.; Li, C.C.; Liu, Z.; Du, W.; Xu, G.; Wei, K. Resolution of intracerebral Bacillus cereus infection following open neck injury after comprehensive treatment. Afr. J. Microbiol. Res. 2012, 6, 1624–1628.
[36]  Sontakke, S.; Cadenas, M.B.; Maggi, R.G.; Diniz, P.P.V.P.; Breitschwerdt, E.B. Use of broad range 16S rDNA PCR in clinical microbiology. J. Microbiol. Methods 2009, 76, 217–225.
[37]  Shaw, G.B. Man and Superman; The University Press: Cambridge, MA, USA, 1903.
[38]  Rastogi, S.; Shah, R.; Perlman, J.; Bhutada, A.; Grossman, S.; Pagala, M.; Lazzaro, M. Pattern of bacterial colonization in a new neonatal intensive care unit and its association with infections in infants. Am. J. Infect. Control 2012, 40, 512–515, doi:10.1016/j.ajic.2012.02.016.
[39]  Weber, D.J.; Rutala, W.A.; Miller, M.B.; Huslage, K.; Sickbert-Bennett, E. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: Norovirus, Clostridium difficile, and Acinetobacter species. Am. J. Infect. Control 2010, 38, S25–S33, doi:10.1016/j.ajic.2010.04.196.
[40]  Samore, M.H.; Venkataraman, L.; DeGirolami, P.C.; Arbeit, R.D.; Karchmer, A.W. Clinical and molecular epidemiology of sporadic and clustered cases of nosocomial Clostridium difficile diarrhea. Am. J. Med. 1996, 100, 32–40, doi:10.1016/S0002-9343(96)90008-X.
[41]  Fawley, W.N.; Parnell, P.; Verity, P.; Freeman, J.; Wilcox, M.H. Molecular epidemiology of endemic Clostridium difficile infection and the significance of subtypes of the United Kingdom epidemic strain (PCR ribotype 1). J. Clin. Microbiol. 2005, 43, 2685–2696, doi:10.1128/JCM.43.6.2685-2696.2005.
[42]  Ayliffe, G.A. Role of the environment of the operating suite in surgical wound infection. Rev. Infect. Dis. 1991, 13, S800–S804, doi:10.1093/clinids/13.Supplement_10.S800.
[43]  Cutting, K.F.; White, R.J. Criteria for identifying wound infection—Revisited. Ostomy Wound Manag. 2005, 51, 28–34.
[44]  Cook, L. Wound assessment: Exploring competency and current practice. Br. J. Community Nurs. Wound Care Suppl. 2011, 16, S34–S40.
[45]  Johnson and Johnson Company. Applied Wound Management Assessment and Continuation Chart; Johnson and Johnson Company: New Brunswick, NJ, USA, 2004.
[46]  Centers for Medicare and Medicaid Services. OASIS-C; 2012.
[47]  Reddy, M.; Gill, S.S.; Wu, W.; Kalkar, S.R.; Rochon, P.A. Does this patient have an infection of a chronic wound? JAMA 2012, 307, 605–611, doi:10.1001/jama.2012.98.
[48]  Falanga, V.; Grinnell, F.; Gilchrest, B.; Maddox, Y.T.; Moshell, A. Workshop on the pathogenesis of chronic wounds. J. Invest. Dermatol. 1994, 102, 125–127.
[49]  Robson, M.C.; Maggi, S.P.; Smith, P.D.; Wassermann, R.J.; Mosiello, G.C.; Hill, D.P.; Cooper, D.M. Ease of wound closure as an endpoint of treatment efficacy. Wound Repair Regen. 1999, 7, 90–96, doi:10.1046/j.1524-475X.1999.00090.x.
[50]  Patel, G.K. How to diagnose and treat haemorrhagic skin necrosis. Wounds UK 2007, 3, 40–54.
[51]  Gardner, S.E.; Frantz, R.A.; Doebbeling, B.N. The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair Regen. 2001, 9, 178–186, doi:10.1046/j.1524-475x.2001.00178.x.
[52]  Moore, K.; Hall, V.; Paull, A.; Morris, T.; Brown, S.; McCulloch, D.; Richardson, M.C.; Harding, K.G. Surface bacteriology of venous leg ulcers and healing outcome. J. Clin. Pathol. 2010, 63, 830–834, doi:10.1136/jcp.2010.077032.
[53]  Kaftandzieva, A.; Cekovska, Z.; Kaftandziev, I.; Petrovska, M.; Panovski, N. Bacteriology of wound—Clinical utility of gram stain microscopy and the correlation with culture. Maced. J. Med. Sci. 2012, 5, 72–77.
[54]  Patten, H. “Identifying wound infection: Taking a swab.”. Available online: http://www.wounds-uk.com/pdf/content_9492.pdf (accessed on 18 September 2013).
[55]  Bonham, P.A. Swab cultures for diagnosing wound infections: A literature review and clinical guideline. J. Wound Ostomy Cont. 2009, 36, 389–395, doi:10.1097/WON.0b013e3181aaef7f.
[56]  Gardner, S.E.; Frantz, R.A.; Saltzman, C.L.; Hillis, S.L.; Park, H.; Scherubel, M. Diagnostic validity of three swab techniques for identifying chronic wound infection. Wound Repair Regen. 2006, 14, 548–557, doi:10.1111/j.1743-6109.2006.00162.x.
[57]  Levine, N.S.; Lindberg, R.B.; Mason, A.D., Jr.; Pruitt, B.A., Jr. The quantitative swab culture and smear: A quick, simple method for determining the number of viable aerobic bacteria on open wounds. J. Trauma Acute Care Surg. 1976, 16, 89–94, doi:10.1097/00005373-197602000-00002.
[58]  Lipsky, B.A.; Berendt, A.R.; Deery, H.G.; Embil, J.M.; Joseph, W.S.; Karchmer, A.W.; LeFrock, J.L.; Lew, D.P.; Mader, J.T.; Horden, C.; et al. Diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 2004, 39, 885–910, doi:10.1086/424846.
[59]  Angel, D.E.; Lloyd, P.; Carville, K.; Santamaria, N. The clinical efficacy of two semi-quantitative wound-swabbing techniques in identifying the causative organism(s) in infected cutaneous wounds. Int. Wound J. 2011, 8, 176–185, doi:10.1111/j.1742-481X.2010.00765.x.
[60]  Robson, M.C. Infection in the surgical patient: An imbalance in the normal equilibrium. Clin. Plast. Surg. 1979, 6, 493–503.
[61]  Kandula, S.; Zenilman, J.M.; Melendez, J.H.; Lazarus, G.S. New frontiers of molecular microbiology in wound healing. In Advances in Wound Care; Sen, C.K., Ed.; Mary Ann Liebert, Inc.: New Rochelle, NY, USA, 2010; Volume 1, pp. 281–286.
[62]  Dupont, C.; Sivadon‐Tardy, V.; Bille, E.; Dauphin, B.; Beretti, J.L.; Alvarez, A.S.; Carbonnelle, E. Identification of clinical coagulase‐negative staphylococci, isolated in microbiology laboratories, by matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry and two automated systems. Clin. Microbiol. Infect. 2010, 16, 998–1004.
[63]  Facklam, R.; Elliott, J.A. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin. Microbiol. Rev. 1995, 8, 479–495.
[64]  Facklam, R. What happened to the streptococci: Overview of taxonomic and nomenclature changes. Clin. Microbiol. Rev. 2002, 15, 613–630, doi:10.1128/CMR.15.4.613-630.2002.
[65]  Huebner, J.; Goldmann, D.A. Coagulase-negative staphylococci: Role as pathogens. Annu. Rev. Med. 1999, 50, 223–236, doi:10.1146/annurev.med.50.1.223.
[66]  Khasriya, R.; Sathiananthamoorthy, S.; Ismail, S.; Kelsey, M.; Wilson, M.; Rohn, J.L.; Malone-Lee, J. Spectrum of bacterial colonization associated with urothelial cells from patients with chronic lower urinary tract symptoms. J. Clin. Microbiol. 2013, 51, 2054–2062, doi:10.1128/JCM.03314-12.
[67]  Kleiner, E.; Monk, A.B.; Archer, G.L.; Forbes, B.A. Clinical significance of Staphylococcus lugdunensis isolated from routine cultures. Clin. Infect. Dis. 2010, 51, 801–803, doi:10.1086/656280.
[68]  Kline, K.A.; Schwartz, D.J.; Gilbert, N.M.; Hultgren, S.J.; Lewis, A.L. Immune modulation by group B Streptococcus influences host susceptibility to urinary tract infection by uropathogenic Escherichia coli. Infect. Immun. 2012, 80, 4186–4194, doi:10.1128/IAI.00684-12.
[69]  Klotchko, A.; Wallace, M.R.; Licitra, C.; Sieger, B. Staphylococcus lugdunensis: An emerging pathogen. South. Med. J. 2011, 104, 509–514, doi:10.1097/SMJ.0b013e31821e91b1.
[70]  Kobayashi, K.; Kami, M.; Ikeda, M.; Kishi, Y.; Murashige, N.; Tanosaki, R.; Takaue, Y. Fulminant septicemia caused by Bacillus cereus following reduced-intensity umbilical cord blood transplantation. Haematologica 2005, 90, ECR06–ECR06.
[71]  Nickel, J.C.; Xiang, J. Clinical significance of nontraditional bacterial uropathogens in the management of chronic prostatitis. J. Urol. 2008, 179, 1391–1395, doi:10.1016/j.juro.2007.11.081.
[72]  Papapetropoulos, N.; Papapetropoulou, M.; Vantarakis, A. Abscesses and wound infections due to Staphylococcus lugdunensis: Report of 16 cases. Infection 2013, 41, 525–528, doi:10.1007/s15010-012-0381-z.
[73]  Peters, B.M.; Jabra-Rizk, M.A.; Graeme, A.O.; Costerton, J.W.; Shirtliff, M.E. Polymicrobial interactions: Impact on pathogenesis and human disease. Clin. Microbiol. Rev. 2012, 25, 193–213, doi:10.1128/CMR.00013-11.
[74]  Xu, Y.; Moser, C.; Al-Soud, W.A.; S?rensen, S.; H?iby, N.; Nielsen, P.H.; Thomsen, T.R. Culture-dependent and-independent investigations of microbial diversity on urinary catheters. J. Clin. Microbiol. 2012, 50, 3901–3908, doi:10.1128/JCM.01237-12.
[75]  Wolcott, R.D.; Gontcharova, V.; Sun, Y.; Dowd, S.E. Evaluation of the bacterial diversity among and within individual venous leg ulcers using bacterial tag-encoded FLX and titanium amplicon pyrosequencing and metagenomic approaches. BMC Microbiol. 2009, 9, e226, doi:10.1186/1471-2180-9-226.
[76]  Dowd, S.E.; Wolcott, R.D.; Kennedy, J.; Jones, C.; Cox, S.B. Molecular diagnostics and personalised medicine in wound care: Assessment of outcomes. J. Wound Care 2011, 20, 234–239.
[77]  Gontcharova, V.; Youn, E.; Sun, Y.; Wolcott, R.D.; Dowd, S.E. A comparison of bacterial composition in diabetic ulcers and contralateral intact skin. Open Microbiol. J. 2010, 4, 8–19, doi:10.2174/1874285801004010008.
[78]  Wolcott, R.D.; Gontcharova, V.; Sun, Y.; Zischakau, A.; Dowd, S.E. Bacterial diversity in surgical site infections: Not just aerobic cocci any more. J. Wound Care 2009, 18, 317–323.
[79]  Percival, S.L.; Dowd, S.E. The microbiology of wounds. In Microbiology of Wounds; Percival, S., Cutting, K., Eds.; CRC Press: Boca Raton, FL, USA, 2010.
[80]  Shin, J.A.; Chang, Y.S.; Kim, H.J.; Kim, S.K.; Chang, J.; Ahn, C.M.; Byun, M.K. Clinical outcomes of tigecycline in the treatment of multidrug-resistant Acinetobacter baumannii infection. Yonsei Med. J. 2012, 53, 974–984, doi:10.3349/ymj.2012.53.5.974.
[81]  Brady, R.R.; Kalima, P.; Damani, N.N.; Wilson, R.G.; Dunlop, M.G. Bacterial contamination of hospital bed-control handsets in a surgical setting: A potential marker of contamination of the healthcare environment. Ann. Roy. Coll. Surg. 2007, 89, 656–660, doi:10.1308/003588407X209347.
[82]  Goodman, E.R.; Platt, R.; Bass, R.; Onderdonk, A.B.; Yokoe, D.S.; Huang, S.S. Impact of an environmental cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care unit rooms. Infect. Control. Hosp. Epidemiol. 2008, 29, 593–599, doi:10.1086/588566.
[83]  Sutter, D.E.; Bradshaw, L.U.; Simkins, L.H.; Summers, A.M.; Atha, M.; Elwood, R.L.; Robertson, J.L.; Murray, C.K.; Wortmann, G.W.; Hospenthal, D.R. High incidence of multidrug-resistant gram-negative bacteria recovered from Afghan patients at a deployed US military hospital. Infect. Control. Hosp. Epidemiol. 2011, 32, 854–860, doi:10.1086/661284.
[84]  Zhanel, G.G.; DeCorby, M.; Adam, H.; Mulvey, M.R.; McCracken, M.; Lagacé-Wiens, P.; Nichol, K.A.; Wierzbowski, A.; Baudry, P.J.; Tailor, F.; et al. Prevalence of antimicrobial-resistant pathogens in Canadian hospitals: Results of the Canadian ward surveillance study (CANWARD 2008). Antimicrob. Agents Chemother. 2010, 54, 4684–4693, doi:10.1128/AAC.00469-10.
[85]  Dawson, L.F.; Valiente, E.; Donahue, E.H.; Birchenough, G.; Wren, B.W. Hypervirulent Clostridium difficile PCR-ribotypes exhibit resistance to widely used disinfectants. PLoS One 2011, 6, e25754.
[86]  Stabler, R.A.; Valiente, E.; Dawson, L.F.; He, M.; Parkhill, J.; Wren, B.W. In-depth genetic analysis of Clostridium difficile PCR-ribotype 027 strains reveals high genome fluidity including point mutations and inversions. Gut Microbes 2010, 1, 269–276, doi:10.4161/gmic.1.4.11870.
[87]  He, M.; Sebaihia, M.; Lawley, T.D.; Stabler, R.A.; Dawson, L.F.; Martin, M.J.; Holt, K.E.; Seth-Smith, H.M.; Quail, M.A.; Rance, R.; et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc. Natl. Acad. Sci. USA 2010, 107, 7527–7532, doi:10.1073/pnas.0914322107.
[88]  Stabler, R.A.; He, M.; Dawson, L.; Martin, M.; Valiente, E.; Corton, C.; Lawley, T.D.; Sebaihia, M.; Quail, M.A.; Rose, G.; et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 2009, 10, R102, doi:10.1186/gb-2009-10-9-r102.
[89]  Guggenheim, M.; Zbinden, R.; Handschin, A.E.; Gohritz, A.; Altintas, M.A.; Giovanoli, P. Changes in bacterial isolates from burn wounds and their antibiograms: A 20-year study (1986–2005). Burns 2009, 35, 553–560, doi:10.1016/j.burns.2008.09.004.
[90]  Gadsby, N.J. Evaluation of real-time 16S rDNA PCR and pyrosequencing for routine identification of bacteria in joint fluid and tissue specimens. Open J. Med. Microbiol. 2011, 1, 1–6, doi:10.4236/ojmm.2011.11001.
[91]  Sibley, C.D.; Church, D.L.; Surette, M.G.; Dowd, S.E.; Parkins, M.D. Pyrosequencing reveals the complex polymicrobial nature of invasive pyogenic infections: Microbial constituents of empyema, liver abscess, and intracerebral abscess. Eur. J. Clin. Microbiol. 2012, 31, 2679–2691, doi:10.1007/s10096-012-1614-x.
[92]  Nelson, C.L.; McLaren, A.C.; McLaren, S.G.; Johnson, J.W.; Smeltzer, M.S. Is aseptic loosening truly aseptic? Clin. Orthop. Relat. R 2005, 437, 25–30.
[93]  Hoenders, C.S.; Harmsen, M.C.; van Luyn, M.J. The local inflammatory environment and microorganisms in “aseptic” loosening of hip prostheses. J. Biomed. Mater. Res. B 2008, 86, 291–301.
[94]  Diaz, R.R.; Picciafuoco, S.; Paraje, M.G.; Villegas, N.A.; Miranda, J.A.; Albesa, I.; Cremonezzi, D.; Commisso, R.; Paglini-Oliva, P. Relevance of biofilms in pediatric tonsillar disease. Eur. J. Clin. Microbiol. 2011, 30, 1503–1509, doi:10.1007/s10096-011-1249-3.
[95]  Saylam, G.; Tatar, E.C.; Tatar, I.; Ozdek, A.; Korkmaz, H. Association of adenoid surface biofilm formation and chronic otitis media with effusion. Arch. Otolaryngol. Head Neck Surg. 2010, 136, 550–555, doi:10.1001/archoto.2010.70.
[96]  Liu, C.M.; Cosetti, M.K.; Aziz, M.; Buchhagen, J.L.; Contente-Cuomo, T.L.; Price, L.B.; Keim, P.S.; Lalwani, A.K. The otologic microbiome: A study of the bacterial microbiota in a pediatric patient with chronic serous otitis media using 16SrRNA gene-based pyrosequencing. Arch. Otolaryngol. Head Neck Surg. 2011, 137, 664–668, doi:10.1001/archoto.2011.116.
[97]  Huebner, R.J. Virologists dilemma. Ann. NY Acad. Sci. 1957, 67, 430–438, doi:10.1111/j.1749-6632.1957.tb46066.x.
[98]  Jabes, D. The antibiotic R and D pipeline: An update. Curr. Opin. Microbiol. 2011, 14, 564–569, doi:10.1016/j.mib.2011.08.002.
[99]  Cooper, M.A.; Shlaes, D. Fix the antibiotics pipeline. Nature 2011, 472, e32, doi:10.1038/472032a.
[100]  Loman, N.J.; Misra, R.V.; Dallman, T.J.; Constantinidou, C.; Gharbia, S.E.; Wain, J.; Pallen, M.J. Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnol. 2012, 30, 434–439, doi:10.1038/nbt.2198.
[101]  Oinn, T.; Addis, M.; Ferris, J.; Marvin, D.; Senger, M.; Greenwood, M.; Li, P. Taverna: A tool for the composition and enactment of bioinformatics workflows. Bioinformatics 2004, 20, 3045–3054, doi:10.1093/bioinformatics/bth361.
[102]  Goecks, J.; Nekrutenko, A.; Taylor, J.; Team, T.G. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010, 11, R86, doi:10.1186/gb-2010-11-8-r86.
[103]  Meyer, F.; Paarmann, D.; D’Souza, M.; Olson, R.; Glass, E.M.; Kubal, M.; Edwards, R.A. The metagenomics RAST server—A public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 2008, 9, e386, doi:10.1186/1471-2105-9-386.
[104]  Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Knight, R. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336, doi:10.1038/nmeth.f.303.
[105]  Lynch, M.D.; Masella, A.P.; Hall, M.W.; Bartram, A.K.; Neufeld, J.D. AXIOME: Automated exploration of microbial diversity. GigaScience 2013, 2, e3, doi:10.1186/2047-217X-2-3.
[106]  Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Weber, C.F. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541, doi:10.1128/AEM.01541-09.
[107]  Afgan, E.; Baker, D.; Coraor, N.; Goto, H.; Paul, I.M.; Makova, K.D.; Taylor, J. Harnessing cloud computing with Galaxy Cloud. Nat. Biotechnol. 2011, 29, 972–974, doi:10.1038/nbt.2028.
[108]  Angiuoli, S.V.; Matalka, M.; Gussman, A.; Galens, K.; Vangala, M.; Riley, D.R.; Fricke, W.F. CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing. BMC Bioinformatics 2011, 12, e356, doi:10.1186/1471-2105-12-356.
[109]  Ragan-Kelley, B.; Walters, W.A.; McDonald, D.; Riley, J.; Granger, B.E.; Gonzalez, A.; Caporaso, J.G. Collaborative cloud-enabled tools allow rapid, reproducible biological insights. ISME J. 2013, 7, 461–464, doi:10.1038/ismej.2012.123.
[110]  Angiuoli, S.V.; White, J.R.; Matalka, M.; White, O.; Fricke, W.F. Resources and costs for microbial sequence analysis evaluated using virtual machines and cloud computing. PLoS One 2011, 6, e26624.
[111]  Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Guyer, M. The NIH human microbiome project. Genome Res. 2009, 19, 2317–2323, doi:10.1101/gr.096651.109.
[112]  Wortman, J.; Giglio, M.; Creasy, H.; Chen, A.; Liolios, K.; Chu, K.; White, O. A data analysis and coordination center for the human microbiome project. Genome Biol. 2010, 11, O13, doi:10.1186/gb-2010-11-s1-o13.
[113]  Markowitz, V.M.; Chen, I.M.A.; Chu, K.; Szeto, E.; Palaniappan, K.; Jacob, B.; Kyrpides, N.C. IMG/M-HMP: A metagenome comparative analysis system for the human microbiome project. PLoS One 2012, 7, e40151.
[114]  Smati, M.; Clermont, O.; Le Gal, F.; Schichmanoff, O.; Jauréquy, F.; Eddi, A.; Denamur, E.; Picard, B. Real-time PCR for quantitative analysis of human commensal Escherichia coli populations reveals a high frequency of sub-dominant phylogroups. Appl. Environ. Microbiol. 2013, 79, 5005–5012, doi:10.1128/AEM.01423-13.
[115]  Eyre, D.W.; Cule, M.L.; Griffiths, D.; Crook, D.W.; Peto, T.E.; Walker, A.S.; Wilson, D.J. Detection of mixed infection from bacterial whole genome sequence data allows assessment of its role in Clostridium difficile transmission. PLoS Comput. Biol. 2013, 9, e1003059, doi:10.1371/journal.pcbi.1003059.
[116]  Keynes, J.M. The General Theory of Employment, Interest and Money; Macmillan: London, UK, 1936.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413