全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pathogens  2014 

Comparative Genomics Identifies a Potential Marker of Human-Virulent Anaplasma phagocytophilum

DOI: 10.3390/pathogens3010025

Keywords: human anaplasmosis, Anaplasma phagocytophilum, comparative genomics, diagnosis, PCR

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have previously described a comparative genome analysis of nine strains of Anaplasma phagocytophilum that showed similarity between strains infecting humans and U.S. dogs and a more distant relationship with horse and ruminant strains. This suggested that it may be possible to distinguish human-infective strains using simple DNA sequence-based diagnostic tests. This would be of epidemiologic significance in identifying and tracking the presence of virulent strains in tick vector populations. Further analysis identified a gene that was present in several strains, including U.S. Ap-variant 1 (ruminant), MRK (horse), and European sheep, but was deleted in strains infecting U.S. humans and dogs, suggesting that it could be a useful marker of human virulence. A simple PCR test was developed to identify the presence/absence of this gene. The PCR test discriminated A. phagocytophilum strains from clinically affected humans and U.S. dogs from the strains more distantly related in genome sequence. This warrants further testing of globally diverse A. phagocytophilum strains to examine world-wide conservation of this gene.

References

[1]  CDC; Statistics and Epidemiology. Annual Cases of Anaplasmosis in the United States. Available online: http://www.cdc.gov/anaplasmosis/stats/ (accessed on 5 September 2013).
[2]  Dahlgren, F.S.; Mandel, E.J.; Krebs, J.W.; Massung, R.F.; McQuiston, J.H. Increasing incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000–2007. Am. J. Trop. Med. Hyg. 2011, 85, 124–131, doi:10.4269/ajtmh.2011.10-0613.
[3]  Annen, K.; Friedman, K.; Eshoa, C.; Horowitz, M.; Gottschall, J.; Straus, T. Two cases of transfusion-transmitted Anaplasma phagocytophilum. Am. J. Clin. Pathol. 2012, 137, 562–565, doi:10.1309/AJCP4E4VQQQOZIAQ.
[4]  Jereb, M.; Pecaver, B.; Tomazic, J.; Muzlovic, I.; Avsic-Zupanc, T.; Premru-Srsen, T.; Levicnik-Stezinar, S.; Karner, P.; Strle, F. Severe human granulocytic anaplasmosis transmitted by blood transfusion. Emerg. Infect. Dis. 2012, 18, 1354–1357, doi:10.3201/eid1808.120180.
[5]  Jin, H.; Wei, F.; Liu, Q.; Qian, J. Epidemiology and control of human granulocytic anaplasmosis: A systematic review. Vector Borne Zoonotic Dis. 2012, 12, 269–274, doi:10.1089/vbz.2011.0753.
[6]  Foley, J.E.; Nieto, N.C.; Massung, R.; Barbet, A.; Madigan, J.; Brown, R.N. Distinct ecologically relevant strains of Anaplasma phagocytophilum. Emerg. Infect. Dis. 2009, 15, 842–843, doi:10.3201/eid1505.081502.
[7]  Massung, R.F.; Priestley, R.A.; Miller, N.J.; Mather, T.N.; Levin, M.L. Inability of a variant strain of Anaplasma phagocytophilum to infect mice. J. Infect. Dis. 2003, 188, 1757–1763, doi:10.1086/379725.
[8]  Massung, R.F.; Mather, T.N.; Priestley, R.A.; Levin, M.L. Transmission efficiency of the Ap-variant 1 strain of Anaplasma phagocytophila. Ann. N. Y. Acad. Sci. 2003, 990, 75–79, doi:10.1111/j.1749-6632.2003.tb07340.x.
[9]  Massung, R.F.; Mather, T.N.; Levin, M.L. Reservoir competency of goats for the Ap-variant 1 strain of Anaplasma phagocytophilum. Infect. Immun. 2006, 74, 1373–1375, doi:10.1128/IAI.74.2.1373-1375.2006.
[10]  Rar, V.; Golovljova, I. Anaplasma, Ehrlichia, and “Candidatus neoehrlichia” Bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect. Genet. Evol. 2011, 11, 1842–1861, doi:10.1016/j.meegid.2011.09.019.
[11]  Stuen, S.; van de Pol, I.; Bergstr?m, K.; Schouls, L.M. Identification of Anaplasma phagocytophila (formerly Ehrlichia phagocytophila) variants in blood from sheep in Norway. J. Clin. Microbiol. 2002, 40, 3192–3197, doi:10.1128/JCM.40.9.3192-3197.2002.
[12]  Stuen, S.; Nevland, S.; Moum, T. Fatal cases of tick-borne fever (tbf) in sheep caused by several 16S rRNA gene variants of Anaplasma phagocytophilum. Ann. N. Y. Acad. Sci. 2003, 990, 433–434, doi:10.1111/j.1749-6632.2003.tb07407.x.
[13]  Barbet, A.; Al-Khedery, B.; Stuen, S.; Granquist, E.; Felshein, R.; Munderloh, U. An emerging tick-borne disease of humans is caused by a subset of strains with conserved genome structure. Pathogens 2013, 2, 544–555, doi:10.3390/pathogens2030544.
[14]  Patz, J.A.; Olson, S.H.; Uejio, C.K.; Gibbs, H.K. Disease emergence from global climate and land use change. Med. Clin. North Am. 2008, 92, 1473–1491, doi:10.1016/j.mcna.2008.07.007.
[15]  Morissette, E.; Massung, R.F.; Foley, J.E.; Alleman, A.R.; Foley, P.; Barbet, A.F. Diversity of Anaplasma phagocytophilum strains, USA. Emerg. Infect. Dis. 2009, 15, 928–931, doi:10.3201/eid1506.081610.
[16]  Rikihisa, Y.; Zhi, N.; Wormser, G.P.; Wen, B.; Horowitz, H.W.; Hechemy, K.E. Ultrastructural and antigenic characterization of a granulocytic ehrlichiosis agent directly isolated and stably cultivated from a patient in New York state. J. Infect. Dis. 1997, 175, 210–213, doi:10.1093/infdis/175.1.210.
[17]  Aguero-Rosenfeld, M.E.; Horowitz, H.W.; Wormser, G.P.; McKenna, D.F.; Nowakowski, J.; Mu?oz, J.; Dumler, J.S. Human granulocytic ehrlichiosis: A case series from a medical center in New York state. Ann. Intern. Med. 1996, 125, 904–908, doi:10.7326/0003-4819-125-11-199612010-00006.
[18]  Asanovich, K.M.; Bakken, J.S.; Madigan, J.E.; Aguero-Rosenfeld, M.; Wormser, G.P.; Dumler, J.S. Antigenic diversity of granulocytic ehrlichia isolates from humans in Wisconsin and New York and a horse in California. J. Infect. Dis. 1997, 176, 1029–1034.
[19]  Gribble, D.H. Equine ehrlichiosis. J. Am. Vet. Med. Assoc. 1969, 155, 462–469.
[20]  Madigan, J.E.; Gribble, D. Equine ehrlichiosis in northern California: 49 cases (1968–1981). J. Am. Vet. Med. Assoc. 1987, 190, 445–448.
[21]  Massung, R.F.; Levin, M.L.; Munderloh, U.G.; Silverman, D.J.; Lynch, M.J.; Gaywee, J.K.; Kurtti, T.J. Isolation and propagation of the Ap-variant 1 strain of Anaplasma phagocytophilum in a tick cell line. J. Clin. Microbiol. 2007, 45, 2138–2143, doi:10.1128/JCM.00478-07.
[22]  Al-Khedery, B.; Lundgren, A.M.; Stuen, S.; Granquist, E.G.; Munderloh, U.G.; Nelson, C.M.; Alleman, A.R.; Mahan, S.M.; Barbet, A.F. Structure of the Type IV secretion system in different strains of Anaplasma phagocytophilum. BMC Genomics 2012, 13, 678, doi:10.1186/1471-2164-13-678.
[23]  Barbet, A.F.; Meeus, P.F.; Bélanger, M.; Bowie, M.V.; Yi, J.; Lundgren, A.M.; Alleman, A.R.; Wong, S.J.; Chu, F.K.; Munderloh, U.G.; et al. Expression of multiple outer membrane protein sequence variants from a single genomic locus of Anaplasma phagocytophilum. Infect. Immun. 2003, 71, 1706–1718, doi:10.1128/IAI.71.4.1706-1718.2003.
[24]  Angiuoli, S.V.; Salzberg, S.L. Mugsy: Fast multiple alignment of closely related whole genomes. Bioinformatics 2011, 27, 334–342, doi:10.1093/bioinformatics/btq665.
[25]  Goecks, J.; Nekrutenko, A.; Taylor, J. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010, 11, R86, doi:10.1186/gb-2010-11-8-r86.
[26]  Blankenberg, D.; von Kuster, G.; Coraor, N.; Ananda, G.; Lazarus, R.; Mangan, M.; Nekrutenko, A.; Taylor, J. Galaxy: A web-based genome analysis tool for experimentalists. Curr. Protoc. Mol. Biol. 2010, Chapter 19, Unit 19.10.1–Unit 19.10.21.
[27]  Giardine, B.; Riemer, C.; Hardison, R.C.; Burhans, R.; Elnitski, L.; Shah, P.; Zhang, Y.; Blankenberg, D.; Albert, I.; Taylor, J.; et al. Galaxy: A platform for interactive large-scale genome analysis. Genome Res. 2005, 15, 1451–1455, doi:10.1101/gr.4086505.
[28]  Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and samtools. Bioinformatics 2009, 25, 2078–2079, doi:10.1093/bioinformatics/btp352.
[29]  Carver, T.; Harris, S.R.; Berriman, M.; Parkhill, J.; McQuillan, J.A. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012, 28, 464–469, doi:10.1093/bioinformatics/btr703.
[30]  Carver, T.; Harris, S.R.; Otto, T.D.; Berriman, M.; Parkhill, J.; McQuillan, J.A. Bamview: Visualizing and interpretation of next-generation sequencing read alignments. Brief. Bioinform. 2013, 14, 203–212, doi:10.1093/bib/bbr073.
[31]  Katoh, K.; Toh, H. Recent developments in the mafft multiple sequence alignment program. Brief. Bioinform. 2008, 9, 286–298, doi:10.1093/bib/bbn013.
[32]  Goodstadt, L.; Ponting, C.P. Chroma: Consensus-based colouring of multiple alignments for publication. Bioinformatics 2001, 17, 845–846, doi:10.1093/bioinformatics/17.9.845.
[33]  Emanuelsson, O.; Brunak, S.; von Heijne, G.; Nielsen, H. Locating proteins in the cell using targetp, signalp and related tools. Nat. Protoc. 2007, 2, 953–971.
[34]  Nielsen, H.; Engelbrecht, J.; Brunak, S.; von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997, 10, 1–6, doi:10.1093/protein/10.1.1.
[35]  Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. Signalp 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786, doi:10.1038/nmeth.1701.
[36]  Nakai, K.; Horton, P. Psort: A program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 1999, 24, 34–36, doi:10.1016/S0968-0004(98)01336-X.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133