全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Essential Oils on Pathogenic Bacteria

DOI: 10.3390/ph6121451

Keywords: essential oils, antimicrobial, cell membrane, microbial morphology, metabolome, fatty acids, quorum sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

The increasing resistance of microorganisms to conventional chemicals and drugs is a serious and evident worldwide problem that has prompted research into the identification of new biocides with broad activity. Plants and their derivatives, such as essential oils, are often used in folk medicine. In nature, essential oils play an important role in the protection of plants. Essential oils contain a wide variety of secondary metabolites that are capable of inhibiting or slowing the growth of bacteria, yeasts and moulds. Essential oils and their components have activity against a variety of targets, particularly the membrane and cytoplasm, and in some cases, they completely change the morphology of the cells. This brief review describes the activity of essential oils against pathogenic bacteria.

References

[1]  Abad, M.J.; Ansuategui, M.; Bermejo, P. Active antifungal substances from natural sources. ARCHIVOC 2007, 2007, 116–145.
[2]  Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475, doi:10.1016/j.fct.2007.09.106.
[3]  Chorianopoulos, N.G.; Giaouris, E.D.; Skandamis, P.N.; Haroutounian, S.A.; Nychas, G.J.E. Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: Bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid-base sanitizers. J. Appl. Microbiol. 2008, 104, 1586–1599, doi:10.1111/j.1365-2672.2007.03694.x.
[4]  Burt, S.A.; Reinders, R.D. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol. 2003, 36, 162–167, doi:10.1046/j.1472-765X.2003.01285.x.
[5]  De Martino, L.; de Feo, V.; Nazzaro, F. Chemical composition and in vitro antimicrobial and mutagenic activities of seven lamiaceae essential oils. Molecules 2009, 14, 4213–4230, doi:10.3390/molecules14104213.
[6]  Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478, doi:10.1128/AAC.49.6.2474-2478.2005.
[7]  Tiwari, B.K.; Valdramidis, V.P.; O’Donnel, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of natural antimicrobials for food preservation. J. Agric. Food Chem. 2009, 57, 5987–6000, doi:10.1021/jf900668n.
[8]  Nikaido, H. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 1994, 264, 382–388.
[9]  Vaara, M. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 1992, 56, 395–411.
[10]  Plesiat, P.; Nikaido, H. Outer membranes of Gram-negative bacteria are permeable to steroid probes. Mol. Microbiol. 1992, 6, 1323–1333, doi:10.1111/j.1365-2958.1992.tb00853.x.
[11]  Nikaido, H. Outer Membrane. In Escherichia coli and Salmonella: Cellular and Molecular biology; Neidhardt, F.C., Ed.; ASM Press: Washington, DC, USA, 1996; pp. 29–47.
[12]  Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316, doi:10.1046/j.1365-2672.2000.00969.x.
[13]  Helander, I.M.; Alakomi, H.L.; Latva, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; von Wright, A. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595.
[14]  Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Koski, P. Polyethyleneimine is an effective permeabilizer of Gram negative bacteria. Microbiology 1997, 143, 3193–3199, doi:10.1099/00221287-143-10-3193.
[15]  De Martino, L.; de Feo, V.; Fratianni, F.; Nazzaro, F. Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components. Nat. Prod. Comm. 2009, 4, 1741–1746.
[16]  Caballero, B.; Trugo, L.C.; Finglas, P.M. Encyclopedia of Food Sciences and Nutrition, 2nd ed. ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2003.
[17]  Bagamboula, C.F.; Uyttendaele, M.; Debevere, J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri.. Food Microbiol. 2004, 21, 33–42, doi:10.1016/S0740-0020(03)00046-7.
[18]  Ultee, A.; Bennik, M.H.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568, doi:10.1128/AEM.68.4.1561-1568.2002.
[19]  Ben Arfa, A.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 2006, 43, 149–154.
[20]  Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462.
[21]  Mann, C.M.; Cox, S.D.; Markham, J.L. The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Lett. Appl. Microbiol. 2000, 30, 294–297, doi:10.1046/j.1472-765x.2000.00712.x.
[22]  Aligiannis, N.; Kalpoutzakis, E.; Mitaku, S.; Chinou, I.B. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 2001, 49, 4168–4170.
[23]  Rattanachaikunsopon, P.; Phumkhachorn, P. Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. J. Biosci. Bioeng. 2010, 110, 614–619, doi:10.1016/j.jbiosc.2010.06.010.
[24]  Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes:implications for their antibacterialactivity. J. Agric. Food Chem. 2007, 55, 6300–6308, doi:10.1021/jf070094x.
[25]  Burt, S.A.; van der Zee, R.; Koets, A.P.; de Graaff, A.M.; Van Knapen, F.; Gaastra, W.; Haagsman, H.P.; Veldhuizen, E.J.A. Carvacrol induces heat shock protein and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl. Environ. Microbiol. 2007, 73, 4484–4490, doi:10.1128/AEM.00340-07.
[26]  Sikkema, J.; de Bont, J.A.M.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201–222.
[27]  Walsh, S.E.; Maillard, J.Y.; Russell, A.D.; Catrenich, C.E.; Charbonneau, D.L.; Bartolo, R.G. Activity and mechanisms of action of selected biocidal agents on Gram-positive and-negative bacteria. J. Appl. Microbiol. 2003, 94, 240–247, doi:10.1046/j.1365-2672.2003.01825.x.
[28]  Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 2008, 47, 174–179, doi:10.1111/j.1472-765X.2008.02407.x.
[29]  Turina, A.D.V.; Nolan, M.V.; Zygadlo, J.A.; Perillo, M.A. Natural terpenes: Self-assembly and brane partitioning. Biophys. Chem. 2006, 122, 101–113, doi:10.1016/j.bpc.2006.02.007.
[30]  Juven, B.J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors that Interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 1994, 76, 626–631, doi:10.1111/j.1365-2672.1994.tb01661.x.
[31]  La Storia, A.; Ercolini, D.; Marinello, F.; di Pasqua, R.; Villani, F.; Mauriello, G. Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Res. Microbiol. 2011, 162, 164–172, doi:10.1016/j.resmic.2010.11.006.
[32]  Veldhuizen, E.J.A.; Tjeerdsma-Van Bokhoven, J.L.M.; Zweijtzer, C.; Burt, S.A.; Haagsman, H.P. Structural requirements for the antimicrobial activity of carvacrol. J. Agric. Food Chem. 2006, 54, 1874–1879.
[33]  Ultee, A.; Kets, E.P.W.; Alberda, M.; Hoekstra, F.A.; Smid, E.J. Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Arch. Microbiol. 2000, 174, 233–238, doi:10.1007/s002030000199.
[34]  Di Pasqua, R.; Hoskins, N.; Betts, G.; Mauriello, G. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J. Agric. Food Chem. 2006, 54, 2745–2749, doi:10.1021/jf052722l.
[35]  Di Pasqua, R.; Betts, G.; Hoskins, N.; Edwards, M.; Ercolini, D.; Mauriello, G. Membrane toxicity of antimicrobial compounds from essential oils. J. Agric. Food Chem. 2007, 55, 4863–4870, doi:10.1021/jf0636465.
[36]  Ultee, A.; Kets, E.P.W.; Smid, E.J. Mechanisms of action of carvacrol on the food-borne pathogen. Appl. Environ. Microbiol. 1999, 65, 4606–4610.
[37]  Horváth, G.; Kovács, K.; Kocsis, B.; Kustos, I. Effect of thyme (Thymus vulgaris L.) essential oil and its main constituents on the outer membrane protein composition of Erwinia strains studied with microfluid chip technology. Chromatographia 2009, 70, 1645–1650, doi:10.1365/s10337-009-1374-7.
[38]  Gabel, C.V.; Berg, H.C. The speed of the flagellar rotary motor of Escherichia coli varies linearly with proton motive force. Proc. Natl. Acad. Sci. USA 2003, 100, 8748–8751, doi:10.1073/pnas.1533395100.
[39]  Laekeman, G.M.; VanHoof, L.; Haemers, A.; Berghe, D.A.V.; Herman, A.G.; Vlietinck, A.J. Eugenol a valuable compound for in vitro experimental research and worthwhile for further in vivo investigation. Phytother. Res. 1990, 4, 90–96, doi:10.1002/ptr.2650040304.
[40]  Jung, H.G.; Fahey, G.C. Nutritional implications of phenolic monomers and lignin: A review. J. Anim. Sci. 1983, 57, 206–219.
[41]  Pauli, A.; Kubeczka, K.H. Antimicrobial properties of volatile phenylpropanes. Nat. Prod. Commun. 2010, 5, 1387–1394.
[42]  Zemek, J.; Kosikova, B.; Augustin, J.; Joniak, D. Antibiotic properties of lignin components. Folia Microbiol. 1979, 24, 483–486, doi:10.1007/BF02927180.
[43]  Zemek, J.; Valent, M.; Pódová, M.; Ko?íková, B.; Joniak, D. Antimicrobial properties of aromatic compounds of plant origin. Folia Microbiol. 1987, 32, 421–425, doi:10.1007/BF02887573.
[44]  Hyldgaard, M.; Mygind, T.; Rikke, L.M. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 1–24.
[45]  Gill, A.O.; Holley, R.A. Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 2004, 70, 5750–5755, doi:10.1128/AEM.70.10.5750-5755.2004.
[46]  Thoroski, J. Eugenol induced inhibition of extracellular enzyme production by Bacillus cereus. J. Food Prot. 1989, 52, 399–403.
[47]  Wendakoon, C.N.; Sakaguchi, M. Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. J. Food Prot. 1995, 58, 280–283.
[48]  Fitzgerald, D.J.; Stratford, M.; Gasson, M.J.; Ueckert, J.; Bos, A.; Narbad, A. Mode of antimicrobial of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J. Appl. Microbiol. 2004, 97, 104–113, doi:10.1111/j.1365-2672.2004.02275.x.
[49]  Fitzgerald, D.J.; Stratford, M.; Gasson, M.J.; Narbad, A. Structure-function analysis of the vanillin molecule and its antifungal properties. J. Agric. Food Chem. 2005, 53, 1769–1775, doi:10.1021/jf048575t.
[50]  Oosterhaven, K.; Poolman, B.; Smid, E.J. S-carvone as a natural potato sprout inhibiting, fungistatic and bacteristatic compound. Ind. Crops Prod. 1995, 4, 23–31, doi:10.1016/0926-6690(95)00007-Y.
[51]  Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Khk?nen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12, doi:10.1016/S0168-1605(00)00218-X.
[52]  Holley, R.A.; Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 2005, 22, 273–292, doi:10.1016/j.fm.2004.08.006.
[53]  Lis-Balchin, M.; Deans, S.G.; Eaglesham, E. Relationship between bioactivity and chemical composition of commercial essential oils. Flavour Fragr. J. 1998, 13, 98–104, doi:10.1002/(SICI)1099-1026(199803/04)13:2<98::AID-FFJ705>3.0.CO;2-B.
[54]  Davidson, P.M. Chemical Preservatives and Naturally Antimicrobial Compounds. In Food Microbiology. Fundamentals and Frontiers, 2nd ed.; Beuchat, M.P., Montville, L.R., Eds.; ASM Press: Washington, DC, USA, 2001; pp. 593–628.
[55]  Pina-Vaz, C.; Gon?alves Rodrigues, A.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gon?alves, M.J.; Martinez-de-Oliveira, J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 73–78, doi:10.1111/j.1468-3083.2004.00886.x.
[56]  Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The anti-microbial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 2008, 124, 91–97, doi:10.1016/j.ijfoodmicro.2008.02.028.
[57]  Burt, S. Essential oils: their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253, doi:10.1016/j.ijfoodmicro.2004.03.022.
[58]  Marino, M.; Bersani, C.; Comi, G. Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedimetric method. Int. J. Food Microbiol. 2001, 67, 187–195, doi:10.1016/S0168-1605(01)00447-0.
[59]  Poolman, B.; Driessen, A.J.M.; Konings, W.N. Regulation of solute transport in Streptococci by external and internal pH values. Microbiol. Rev. 1987, 51, 498–508.
[60]  Trumpower, B.L.; Gennis, R.B. Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. Ann. Rev. Biochem. 1994, 63, 675–716, doi:10.1146/annurev.bi.63.070194.003331.
[61]  Andrews, R.E.; Parks, L.W.; Spence, K.D. Some effects of Douglas fir terpenes on certain microorganisms. Appl. Environ. Microbiol. 1980, 40, 301–304.
[62]  Uribe, S.; Ramirez, T.; Pena, A. Effects of β-pinene on yeast membrane functions. J. Bacteriol. 1985, 161, 1195–1200.
[63]  Knobloch, K.; Pauli, A.; Iberl, B. Antibacterial activity and antifungal properties of essential oil components. J. Essent. Oils Res. 1988, 1, 119–128, doi:10.1080/10412905.1989.9697767.
[64]  Gill, A.O.; Holley, R.A. Disruption of E. coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int. J. Food Microbiol. 2006, 108, 1–9, doi:10.1016/j.ijfoodmicro.2005.10.009.
[65]  Gustafson, J.E.; Liew, Y.C.; Chew, S.; Markham, J.L.; Bell, H.C.; Wyllie, S.G.; Warmington, J.R. Effects of tea tree oil on Escherichia coli. Lett. Appl. Microbiol. 1998, 26, 194–198.
[66]  Ultee, A.; Smid, E.J. Influence of carvacrol on growth and toxin production by Bacillus cereus. Int. J. Food Microbiol. 2001, 64, 373–378, doi:10.1016/S0168-1605(00)00480-3.
[67]  Kim, J.; Marshal, M.R.; Wie, C.I. Antibacterial activity of some essential oils components against five foodborne pathogens. J. Agric. Food Chem. 1995, 43, 2839–2845, doi:10.1021/jf00059a013.
[68]  Tassou, C.; Koutsoumanis, K.; Nychas, J.E. Inhibition of Salmonella enteritidis and Staphylococcus aureus in nutrient broth by mint essential oil. Food Res. Int. 2000, 33, 273–280, doi:10.1016/S0963-9969(00)00047-8.
[69]  Mrozik, A.; Pietrovska-Seget, Z.; Labuzek, S. Changes in whole cell-derived fatty acids induced by naphthalene in bacteria from genus Pseudomonas. Microbiol. Res. 2004, 159, 87–95, doi:10.1016/j.micres.2004.02.001.
[70]  Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920, doi:10.1128/AAC.46.6.1914-1920.2002.
[71]  Heath, R.J.; Rock, C.O. Fatty acid biosynthesis as a target for novel antibacterials. Curr. Opin. Invest. Drugs 2004, 5, 146–153.
[72]  Heath, R.J.; White, S.W.; Rock, C.O. Lipid biosynthesis as a target for antibacterial agents. Prog. Lipid Res. 2001, 40, 467–497, doi:10.1016/S0163-7827(01)00012-1.
[73]  Campbell, J.W.; Cronan, J.E. Bacterial fatty acids biosynthesis: Targets for antibacterial drug discovery. Ann. Rev. Microbiol. 2001, 55, 305–332, doi:10.1146/annurev.micro.55.1.305.
[74]  Bayer, A.S.; Presad, R.; Chandra, J.; Smirti, A.M.; Varma, A.; Skurray, R.A.; Firth, N.; Brown, M.H.; Koo, S.P.; Yeaman, M.R. In vitro resistance of Staphylococcus aureus to thrombin induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect. Immun. 2000, 68, 3548–3553, doi:10.1128/IAI.68.6.3548-3553.2000.
[75]  Heath, R.J.; Jackowski, S.; Rock, C.O. Fatty Acid and Phospholipid Metabolism in Prokaryotes. In Biochemistry of Lipids, Lipoproteins and Membranes, 4th ed.; Vance, J.E., Vance, D.E., Eds.; Elsevier: New York, NY, USA, 2002.
[76]  Russell, N.J. Mechanism of thermal adaptation in bacteria: Blueprints for survival. Tr. Biochem. Sci. 1984, 9, 108–112, doi:10.1016/0968-0004(84)90106-3.
[77]  Russell, N.J. Psychrophilic bacteria: Molecular adaptations of membrane lipids. Comp. Biochem. Physiol. 1997, 118, 489–493, doi:10.1016/S0300-9629(97)87354-9.
[78]  Heipieper, H.J.; Meinhardt, F.; Segura, A. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: Biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett. 2003, 229, 1–7, doi:10.1016/S0378-1097(03)00792-4.
[79]  Domadia, P.; Swarup, S.; Bhunia, A.; Sivaraman, J.; Dasgupta, D. Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochem. Pharmacol. 2007, 74, 831–840, doi:10.1016/j.bcp.2007.06.029.
[80]  Di Pasqua, R.; Mamone, G.; Ferranti, P.; Ercolini, D.; Mauriello, G. Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 2010, 10, 1040–1049.
[81]  Kumar, M.; Berwal, J.S. Sensitivity of food pathogens to garlic (Allium sativum). J. Appl. Microbiol. 1998, 84, 213–215, doi:10.1046/j.1365-2672.1998.00327.x.
[82]  Di Pasqua, R.; Mauriello, G.; Mamone, G.; Ercolini, D. Expression of DnaK, HtpG, GroEL and Tf chaperones and the corresponding encoding genes during growth of Salmonella Thompson in presence of thymol alone or in combination with salt and cold stress. Food Res. Int. 2013, 52, 153–159, doi:10.1016/j.foodres.2013.02.050.
[83]  Baucheron, S.; Mouline, C.; Praud, K.; Chlaus-Dancla, E.; Cloeckaert, A. TolC but not AcrB is essential for multidrugresistant Salmonella enterica serotype Typhimurium colonization of chicks. J. Antimicrob. Chem. 2005, 55, 707–712, doi:10.1093/jac/dki091.
[84]  Klose, K.E.; Mekalanos, J.J. Simultaneous prevention of glutamine synthesis and high-affinity transport attenuates Salmonella typhimurium virulence. Infect. Immun. 1997, 65, 587–596.
[85]  Miesel, L.; Greene, J.; Black, T.A. Genetic strategies for antibacterial drug discovery. Nat. Rev. Gen. 2003, 4, 442–456, doi:10.1038/nrg1086.
[86]  Xu, H.H.; Trawick, J.D.; Haselbeck, R.J.; Forsyth, R.; Yamamoto, R.T.; Archer, R.; Patterson, J.; Allen, M.; Froelich1, J.M. ; Taylor, I.; et al. Staphylococcus aureus Target Array: Comprehensive differential essential gene expression as a mechanistic tool to profile antibacterials. Antimicrob. Agents Chemother. 2010, 54, 3659–3670, doi:10.1128/AAC.00308-10.
[87]  Scotti, P.A.; Urbanus, M.L.; Brunner, J.; de Gier, J.W.L.; von Heijne, G.; van der Does, C.; Driessen, A.J.M.; Oudega, B.; Luirink, J. YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J. 2000, 19, 542–549, doi:10.1093/emboj/19.4.542.
[88]  Serek, J.; Bauer-Manz, G.; Struhalla, G.; van den Berg, L.; Kiefer, D.; Dalbey, R.; Kuhn, A. Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J. 2004, 23, 294–301, doi:10.1038/sj.emboj.7600063.
[89]  Samuelson, J.C.; Chen, M.; Jiang, F.; M?ller, I.; Wiedmann, M.; Kuhn, A.; Phillips, G.J.; Dalbey, R.E. YidC mediates membrane protein insertion in bacteria. Nature 2000, 406, 637–641, doi:10.1038/35020586.
[90]  Van der Laan, M.; Urbanus, M.; Ten Hagen-Jongman, C.; Nouwen, N.; Oudega, B.; Harms, N.; Driessen, A.J.M.; Luirink, J. A conserved function of YidC in the biogenesis of respiratory chain complexes. Proc. Nat. Acad. Sci. USA 2003, 100, 5801–5806, doi:10.1073/pnas.0636761100.
[91]  Patil, S.D.; Sharma, R.; Srivastava, S.; Navani, N.K.; Pathania, R. Down regulation of yidC in Escherichia coli by antisense RNA expression results in sensitization to antibacterial essential oils eugenol and carvacrol. PLoS One 2013, 8, 57370.
[92]  Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Sci. 2006, 73, 236–244, doi:10.1016/j.meatsci.2005.11.019.
[93]  Turgis, M.; Han, J.; Caillet, S.; Lacroix, M. Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control. 2009, 20, 1073–1079, doi:10.1016/j.foodcont.2009.02.001.
[94]  Caillet, S.; Ursachi, L.; Shareck, F.; Lacroix, M. Effect of gamma radiation and oregano essential oil on murein and ATP concentration of Staphylococcus aureus. J. Food Sci. 2009, 74, M499–M508, doi:10.1111/j.1750-3841.2009.01368.x.
[95]  Caillet, S.; Lacroix, M. Effect of gamma radiation and oregano essential oil on murein and ATP concentration of Listeria monocytogenes. J. Food Prot. 2006, 69, 2961–2969.
[96]  Abee, T.; Klaenhammer, T.R.; Letellier, L. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl. Env. Microbiol. 1994, 60, 1006–1013.
[97]  Shabala, L.; Budde, L.; Ross, B.; Siegumfeldt, T.; Jakobsen, H.; McMeekin, M. Responses of Listeria monocytogenes to acid stress and glucose availability revealed by a novel combination of fluorescence microscopy and microelectrode ion-selective techniques. Appl. Env. Microbiol. 2002, 68, 1794–1802, doi:10.1128/AEM.68.4.1794-1802.2002.
[98]  Kwon, J.A.; Yu, C.B.; Park, H.D. Bactericidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus. Lett. Appl. Microbiol. 2003, 37, 61–65, doi:10.1046/j.1472-765X.2003.01350.x.
[99]  Carneiro, S.; Villas-B?as, S.G.; Ferreira, E.C.; Rocha, I. Metabolic footprint analysis of recombinant Escherichia coli strains during fed-batch fermentations. Mol. Bio. Syst. 2011, 7, 899–910.
[100]  Van der Werf, M.J.; Overkamp, K.M.; Muilwijk, B.; Coulier, L.; Hankemeier, T. Microbial metabolomics: Toward a platform with full metabolome coverage. Anal. Biochem. 2007, 370, 17–25, doi:10.1016/j.ab.2007.07.022.
[101]  Rabinowitz, J.D. Cellular metabolomics of Escherichia coli. Exp. Rev. Prot. 2007, 4, 187–198, doi:10.1586/14789450.4.2.187.
[102]  Mapelli, V.; Olsson, L.; Nielsen, J. Metabolic footprinting in microbiology: Methods and applications in functional genomics and biotechnology. Trends Biotech. 2008, 26, 490–497, doi:10.1016/j.tibtech.2008.05.008.
[103]  Jozefczuk, S.; Klie, S.; Catchpole, G.; Szymanski, J.; Cuadros-Inostroza, A.; Steinhauser, D.; Selbig, J.; Willmitzer, L. Metabolomic and transcriptomic stress response of Escherichia coli. Mol. Syst. Biol. 2010, 6, 364–381.
[104]  Gunasekera, T.S.; Csonka, L.N.; Paliy, O. Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses. J. Bacteriol. 2008, 190, 3712–3720, doi:10.1128/JB.01990-07.
[105]  Durfee, T.; Hansen, A.M.; Zhi, H.; Blattner, F.R.; Jin, D.J. Transcription profiling of the stringent response in Escherichia coli. J. Bacteriol. 2008, 190, 1084–1096, doi:10.1128/JB.01092-07.
[106]  Malin, G.; Lapidot, A. Induction of synthesis of tetrahydropyrimidine derivatives in Streptomyces strains and their effect on Escherichia coli in response to osmotic and heat stress. J. Bacteriol. 1996, 178, 385–395.
[107]  Picone, G.; Laghi, L.; Gardini, F.; Lanciotti, R.; Siroli, L.; Capozzi, F. Evaluation of the effect of carvacrol on the Escherichia coli 555 metabolome by using 1H-NMR spectroscopy. Food Chem. 2013, 141, 4367–4374, doi:10.1016/j.foodchem.2013.07.004.
[108]  Cox, S.D.; Gustafson, J.E.; Mann, C.M.; Markham, J.L.; Liew, Y.C.; Hartland, R.P.; et al. Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli. Lett. Appl. Microbiol. 1998, 26, 355–358.
[109]  Hossain, Z.S.M.; Bojko, B.; Pawliszyn, J. Automated SPME–GC–MS monitoring of headspace metabolomic responses of E. coli to biologically active components extracted by the coating. An. Chim. Acta 2013, 776, 41–49, doi:10.1016/j.aca.2013.03.018.
[110]  Hafedh, H.; Najla, T.; Emira, N.; Mejdi, S.; Hanen, F.; Riadh, K.; Amina, B. Biological activities of the essential oils and methanol extract of two cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine. World J. Biotec. Microbiol. 2009, 25, 2227–2238, doi:10.1007/s11274-009-0130-3.
[111]  Kalchayanand, N.; Dunneb, P.; Sikes, A.; Ray, B. Viability loss and morphology change of foodborne pathogens following exposure to hydrostatic pressures in the presence and absence of bacteriocins. Int. J. Food Microbiol. 2004, 91, 91–98, doi:10.1016/S0168-1605(03)00324-6.
[112]  Braga, P.C.; Ricci, D. Atomic Force Microscopy: Application to investigation of Escherichia coli morphology before and after exposure to cefodizime. Antimicrob. Agents Chemother. 1998, 42, 18–22.
[113]  Slavik, M.F.; Kim, W.J.; Walker, J.T. Reduction of Salmonella and Campylobacter on chicken carcasses by changing scalding temperature. J. Food Prot. 1995, 58, 689–691.
[114]  Sikkema, J.; Weber, F.J.; Heipieper, H.J.; de Bont, J.A.M. Cellular toxicity of lipophilic compounds: Mechanisms, implications, and adaptations. Biocatalysis 1994, 10, 113–122, doi:10.3109/10242429409065221.
[115]  De Sousa, J.P.; de Araújo Torres, R.; Alves de Azerêdo, G.; Queiroz Figueiredo, B.R.C.; da Silva Vasconcelos, M.A.; Leite de Souza, E. Carvacrol and 1,8-cineole alone or in combination at sublethal concentrations induce changes in the cell morphology and membrane permeability of Pseudomonas fluorescens in a vegetable-based broth. Int. J. Food Microbiol. 2012, 158, 9–13, doi:10.1016/j.ijfoodmicro.2012.06.008.
[116]  Tyagi, A.K.; Malik, A. Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens. Int. J. Food Microbiol. 2010, 143, 205–210, doi:10.1016/j.ijfoodmicro.2010.08.023.
[117]  Nostro, A.; Marino, A.; Blanco, A.R.; Cellini, L.; di Giulio, M.; Pizzimenti, F.; Roccaro, A.S.; Bisignano, G. In vitro activity of carvacrol against staphylococcal preformed biofilm by liquid and vapour contact. J. Med. Microbiol. 2009, 58, 791–797, doi:10.1099/jmm.0.009274-0.
[118]  Sandasi, M.; Leonard, C.M.; Viljoen, A.M. The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control 2008, 19, 1070–1075, doi:10.1016/j.foodcont.2007.11.006.
[119]  Meincken, M.; Holroyd, D.L.; Rautenbach, M. Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli. Antimicrob. Agents Chemother. 2005, 10, 4085–4092, doi:10.1128/AAC.49.10.4085-4092.2005.
[120]  Alakomi, H.L.; Paananen, A.; Suihko, M.L.; Helander, I.M.; Saarela, M. Weakening effect of cell permeabilizer on gram-negative bacteria causing biodeterioration. Appl. Environ. Microbiol. 2006, 72, 4695–4703, doi:10.1128/AEM.00142-06.
[121]  Bassler, B.L. Small talk: Cell-to-cell communication in bacteria. Cell 2002, 109, 421–424, doi:10.1016/S0092-8674(02)00749-3.
[122]  Hentzer, M.; Givskov, M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J. Clin. Invest. 2003, 112, 1300–1307.
[123]  Lewis, K.; Ausubel, F.M. Prospects of plant derived antibacterials. Nat. Biotechnol. 2006, 24, 1504–1507, doi:10.1038/nbt1206-1504.
[124]  Kumar, V.P.; Chauhan, N.S.; Rajani, H.P.M. Search for antibacterial and antifungal agents from selected Indian medicinal plants. J. Ethnopharmacol. 2006, 107, 182–188, doi:10.1016/j.jep.2006.03.013.
[125]  Nazzaro, F.; Fratianni, F.; Coppola, R. Quorum sensing and phytochemicals. Int. J. Mol. Sci. 2013, 14, 12607–12619, doi:10.3390/ijms140612607.
[126]  Faleiro, M.L. The Mode of Antibacterial Action of ESsential Oils. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Vilas, A., Ed.; Brown Walker Press: Boca Raton, FL, USA, 2011; pp. 1143–1156.
[127]  Al-Shuneigat, J.; Cox, S.D.; Markham, J.L. Effects of a topical essential oil-containing formulation on bio-film-forming coagulase-negative staphylococci. Lett. Appl. Microbiol. 2005, 41, 52–55, doi:10.1111/j.1472-765X.2005.01699.x.
[128]  Khan, M.S.; Zahin, M.; Hasan, S.; Husain, F.M.; Ahmad, I. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett. Appl. Microbiol. 2009, 49, 354–360, doi:10.1111/j.1472-765X.2009.02666.x.
[129]  Zaki, A.A.; Shaaban, M.I.; Hashish, N.E.; Amer, M.A.; Lahloub, M.F. Assessment of anti-quorum sensing activity for some ornamental and medicinal plants native to Egypt. Sci. Pharm. 2013, 81, 251–258, doi:10.3797/scipharm.1204-26.
[130]  Szabó, M.A.; Varga, G.Z.; Hohmann, J.; Schelz, Z.; Szegedi, E.; Amaral, L.; Molnár, J. Inhibition of quorum-sensing signals by essential oils. Phytother. Res. 2010, 24, 782–786.
[131]  Chernin, L.S.; Winson, M.K.; Thompson, J.M.; Haran, S.; Bycroft, B.W.; Chet, I.; Williams, P.; Gordon, S.; Stewart, A.B. Chitinolytic activity in Chromobacterium violaceum: Substrate analysis and regulation by quorum sensing. J. Bacteriol. 1998, 180, 4435–4441.
[132]  Niu, S.; Afre, S.; Gilbert, E.S. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett. Appl. Microbiol. 2006, 43, 489–494, doi:10.1111/j.1472-765X.2006.02001.x.
[133]  Brackman, G.; Celen, S.; Hillaert, U.; Calenbergh, S.V.; Cos, P.; Maes, L.; Nelis, H.J.; Coenye, T. Structure-activity relationship of cinnamaldehyde analogs as inhibitors of ai-2 based quorum sensing and their effect on virulence of Vibrio spp. PLoS One 2011, 6, e16084.
[134]  Brackman, G.; Defoirdt, T.; Miyamoto, C.; Bossier, P.; Calenbergh, S.V.; Nelis, H.; Coenye, T. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol. 2008, 8, 1–14, doi:10.1186/1471-2180-8-1.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133