全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Clinical Pharmacology of Furosemide in Neonates: A Review

DOI: 10.3390/ph6091094

Keywords: furosemide, neonate, metabolism, pharmacokinetics, pharmacodynamics, continuous infusion, extracorporeal membrane oxygenation, side-effects

Full-Text   Cite this paper   Add to My Lib

Abstract:

Furosemide is the diuretic most used in newborn infants. It blocks the Na +-K +-2Cl ? symporter in the thick ascending limb of the loop of Henle increasing urinary excretion of Na + and Cl ?. This article aimed to review the published data on the clinical pharmacology of furosemide in neonates to provide a critical, comprehensive, authoritative and, updated survey on the metabolism, pharmacokinetics, pharmacodynamics and side-effects of furosemide in neonates. The bibliographic search was performed using PubMed and EMBASE databases as search engines; January 2013 was the cutoff point. Furosemide half-life (t 1/2) is 6 to 20-fold longer, clearance (Cl) is 1.2 to 14-fold smaller and volume of distribution (Vd) is 1.3 to 6-fold larger than the adult values. t 1/2 shortens and Cl increases as the neonatal maturation proceeds. Continuous intravenous infusion of furosemide yields more controlled diuresis than the intermittent intravenous infusion. Furosemide may be administered by inhalation to infants with chronic lung disease to improve pulmonary mechanics. Furosemide stimulates prostaglandin E2 synthesis, a potent dilator of the patent ductus arteriosus, and the administration of furosemide to any preterm infants should be carefully weighed against the risk of precipitation of a symptomatic patent ductus arteriosus. Infants with low birthweight treated with chronic furosemide are at risk for the development of intra-renal calcifications.

References

[1]  Aranda, J.V.; Collinge, J.M.; Clarkson, S. Epidemiologic aspects of drug utilization in a newborn intensive care unit. Semin. Perinatol. 1982, 6, 148–154.
[2]  Aranda, J.V.; Clarkson, S.; Collinge, J.M. Changing pattern of drug utilization in a neonatal intensive care unit. Am. J. Perinatol. 1983, 1, 28–30.
[3]  Reilly, R.F.; Jackson, E.K. Regulation of renal function and vascular volume. In Goodman and Gilman’s. The Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L., Chabner, B., Knollman, B., Eds.; Mc Graw Hill: New York, NY, USA, 2011; pp. 682–686.
[4]  Onrot, J.; Ragno, R.E. Treatment of cardiovascular disorders, hypertension. In Clinical Pharmacology. Basic Principles in Therapeutics, 3rd ed.; Melmon, K.L., Morelli, H.F., Hoffman, B.B., Nierenberg, D.W., Eds.; Mc Graw Hill: New York, NY, USA, 1992; p. 57.
[5]  Thummel, K.E.; Shen, D.D.; Isoherranen, N. Design and optimization of dosage regimens, pharmacokinetic data. In Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L., Chabner, B., Knollman, B., Eds.; Mc Graw Hill: New York, NY, USA, 2011; p. 1935.
[6]  Mirochnick, M.H.; Miceli, J.J.; Kramer, P.A.; Chapron, D.J.; Raye, J.R. Furosemide pharmacokinetics in very low birth weight infants. J. Pediatr. 1988, 112, 653–657, doi:10.1016/S0022-3476(88)80192-6.
[7]  Young, T.E.; Mangum, B. Neofax: A Manual of Drugs used in neonatal care. Cardiovascular, 23rd ed. ed.; Thomson Reuters: Montvale, NJ, USA, 2010; pp. 248–249.
[8]  Schaible, T.; Hermle, D.; Loersch, F.; Demirakca, S.; Reinshagen, K.; Varnholt, V. A 20-year experience on neonatal extracorporeal membrane oxygenation in a referral center. Intensive Care Med. 2010, 36, 1229–1234, doi:10.1007/s00134-010-1886-5.
[9]  Van der Vorst, M.M.; Wildschut, E.; Houmes, R.J.; Gischler, S.J.; Kist-van Holthe, J.E.; Burggraaf, J.; van der Heijden, A.J.; Tibboel, D. Evaluation of furosemide regimens in neonates treated with extracorporeal membrane oxygenation. Crit. Care. 2006, 10, R168, doi:10.1186/cc5115.
[10]  Neonatal Formulary, 6th ed. ed.; John Wiley & Sons: West Sussex, UK, 2011; p. 116.
[11]  Stewart, A.; Brion, L.P.; Soll, R. Diuretics for respiratory distress syndrome in preterm infants. Cochrane Database Syst. Rev. 2011, 12, CD001454.
[12]  Sulyok, E.; Varga, F.; Németh, M.; Tényi, I.; Csaba, I.F.; Ertl, T.; Gy?ry, E. Furosemide-induced alterations in the electrolyte status, the function of renin-angiotensin-aldosterone system, and the urinary excretion of prostaglandins in newborn infants. Pediatr. Res. 1980, 14, 765–768, doi:10.1203/00006450-198005000-00011.
[13]  Brion, L.P.; Soll, R.F. Diuretics for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2008, 1, CD001454.
[14]  Heidland, A.; Wigand, M.E. The effect of Furosemide at high doses on auditorium sensitivity in patients with uremia. Klin. Wschr. 1970, 48, 1052–1056, doi:10.1007/BF01497211.
[15]  Rybak, L.P. Furosemide ototoxicity, clinical and experimental aspects. Laryngoscope 1985, 95, 1–14, doi:10.1288/00005537-198509010-00001.
[16]  Adams, N.D.; Rowe, J.C. Nephrocalcinosis. Clin. Perinatol. 1992, 19, 179–195.
[17]  Friis-Hansen, B. Body water compartments in children, changes during growth and related changes in body composition. Pediatrics 1961, 28, 169–181.
[18]  Heimler, R.; Doumas, B.T.; Jendrzejczak, B.M.; Nemeth, P.B.; Hoffman, R.G.; Nelin, L.D. Relationship between nutrition, weight change, and fluid compartments in preterm infants during the first week of life. J Pediatr. 1993, 122, 110–114, doi:10.1016/S0022-3476(05)83502-4.
[19]  Allegaert, K.; Verbesselt, R.; Naulaers, G.; van den Anker, J.N.; Rayyan, M.; Debeer, A.; de Hoon, J. Developmental pharmacology, neonates are not just small adults. Acta Clin. Belg. 2008, 63, 16–24.
[20]  Alcorn, J.; McNamara, P.J. Ontogeny of hepatic and renal systemic clearance pathways in infants, part II. Clin. Pharmacokinet. 2002, 41, 1077–1094, doi:10.2165/00003088-200241130-00005.
[21]  Van den Anker, J.N. Pharmacokinetics and renal function in preterm infants. Acta Paediatr. 1996, 85, 1393–1399, doi:10.1111/j.1651-2227.1996.tb13942.x.
[22]  Kapur, G.; Mattoo, T.; Aranda, J.V. Pharmacogenomics and renal drug disposition in the newborn. Semin. Perinatol. 2004, 28, 132–140, doi:10.1053/j.semperi.2003.11.005.
[23]  Allegaert, K.; Anderson, B.J.; van den Anker, J.N.; Vanhaesebrouck, S.; de Zegher, F. Renal drug clearance in preterm neonates, relation to prenatal growth. Ther. Drug Monit. 2007, 29, 284–291, doi:10.1097/FTD.0b013e31806db3f5.
[24]  Kearns, G.L.; Abdel-Rahman, S.M.; Alander, S.W.; Blowey, D.L.; Leeder, J.S.; Kauffman, R.E. Developmental pharmacology—Drug disposition, action, and therapy in infants and children. N. Engl. J. Med. 2003, 349, 1157–1167, doi:10.1056/NEJMra035092.
[25]  Rakhmanina, N.Y.; van den Anker, J.N. Pharmacological research in pediatrics, From neonates to adolescents. Adv. Drug Deliv. Rev. 2006, 58, 4–14, doi:10.1016/j.addr.2005.12.001.
[26]  Peters, A.M.; Allison, H.; Ussov, W.Y. Measurement of the ratio of glomerular filtration rate to plasma volume from the technetium-99m diethylene triamine pentaacetic acid renogram, comparison with glomerular filtration rate in relation to extracellular fluid volume. Eur. J. Nucl. Med. 1994, 21, 322–327, doi:10.1007/BF00947967.
[27]  Vanpeè, M.; Herin, P.; Zetterstrom, R. Postnatal development of renal function in very low birth weight infants. Acta Pediatr. Scand. 1998, 77, 191–197.
[28]  Gallini, F.; Maggio, L.; Romagnoli, C.; Marrocco, G.; Tortorolo, G. Progression of renal function in preterm neonates with gestational age < or = 32 weeks. Pediatr. Nephrol. 2000, 15, 119–124, doi:10.1007/s004670000356.
[29]  Awad, H.; el-Safty, I.; el-Barbary, M.; Imam, S. Evaluation of renal glomerular and tubular functional and structural integrity in neonates. Am. J. Med. Sci. 2002, 324, 261–266, doi:10.1097/00000441-200211000-00005.
[30]  Wells, T.G. The pharmacology and therapeutics of diuretics in the pediatric patient. Pediatr. Clin. North Am. 1990, 37, 463–504.
[31]  Arant, B.S., Jr. Developmental patterns of renal functional maturation compared in the human neonate. J. Pediatr. 1978, 92, 705–712, doi:10.1016/S0022-3476(78)80133-4.
[32]  Sonntag, J.; Prankel, B.; Waltz, S. Serum creatinine concentration, urinary creatinine excretion and creatinine clearance during the first 9 weeks in preterm infants with a birth weight below 1,500 g. Eur. J. Pediatr. 1996, 155, 815–819, doi:10.1007/BF02002914.
[33]  Van der Heijden, A.J.; Grose, W.F.; Ambagtsheer, J.J.; Provoost, A.P.; Wolff, E.D.; Sauer, P.J. Glomerular filtration rate in the preterm infant, the relation to gestational and postnatal age. Eur. J. Pediatr. 1988, 148, 24–28, doi:10.1007/BF00441807.
[34]  Van den Anker, J.N.; de Groot, R.; Broerse, H.M.; Sauer, P.J.; van der Heijden, B.J.; Hop, W.C.; Lindemans, J. Assessment of glomerular filtration rate in preterm infants by serum creatinine, comparison with inulin clearance. Pediatrics 1995, 96, 1156–1158.
[35]  Pachì, A.; Lubrano, R.; Maggi, E.; Giancotti, A.; Giampà, G.; Elli, M.; Mannarino, O.; Castello, M.A. Renal tubular damage in fetuses with intrauterine growth retardation. Fetal Diagn. Ther. 1993, 8, 109–113, doi:10.1159/000263757.
[36]  Hinchliffe, S.A.; Lynch, M.R.; Sargent, P.H.; Howard, C.V.; van Velzen, D. The effect of intrauterine growth retardation on the development of renal nephrons. Br. J. Obstet. Gynaecol. 1992, 99, 296–301, doi:10.1111/j.1471-0528.1992.tb13726.x.
[37]  Robinson, D.; Weiner, C.P.; Nakamura, K.T.; Robillard, J.E. Effect of intrauterine growth retardation on renal function on day one of life. Am. J. Perinatol. 1990, 7, 343–346, doi:10.1055/s-2007-999519.
[38]  Narang, A.; Bhakoo, O.N.; Majumdar, S.; Kumar, C.H. Renal function in SFD and AFD preterm babies. Indian Pediatr. 1993, 30, 201–205.
[39]  Silver, L.E.; Decamps, P.J.; Korst, L.M.; Platt, L.D.; Castro, L. Intrauterine growth restriction is accompanied by decreased renal volume in the human fetus. Am. J. Obstet. Gynecol. 2003, 188, 1320–1325, doi:10.1067/mob.2003.270.
[40]  Kushnir, A.; Pinheiro, J.M. Comparison of renal effects of ibuprofen versus indomethacin during treatment of patent ductus arteriosus in contiguous historical cohorts. BMC Clin. Pharmacol. 2011, 11, 8, doi:10.1186/1472-6904-11-8.
[41]  Robillard, J.E.; Smith, F.G.; Segar, J.L.; Guillery, E.N.; Jose, P.A. Mechanisms regulating renal sodium excretion during development. Pediatr. Nephrol. 1992, 6, 205–213, doi:10.1007/BF00866320.
[42]  Guignard, J.P. Effect of drugs on the immature kidney. Adv. Nephrol. Necker Hosp. 1993, 22, 193–211.
[43]  Roberts, D.S.; Haycock, G.B.; Dalton, R.N.; Turner, C.; Tomlinson, P.; Stimmler, L.; Scopes, J.W. Prediction of acute renal failure after birth asphyxia. Arch. Dis. Child. 1990, 65, 1021–1028, doi:10.1136/adc.65.10_Spec_No.1021.
[44]  Vanpée, M.; Blennow, M.; Linné, T.; Herin, P.; Aperia, A. Renal function in very low birth weight infants, normal maturity reached during early childhood. J. Pediatr. 1992, 121, 784–788, doi:10.1016/S0022-3476(05)81916-X.
[45]  Nash, M.A.; Edelmann, C.M., Jr. The developing kidney. Immature function or inappropriate standard. Nephron 1973, 11, 71–90, doi:10.1159/000180221.
[46]  Bernard, A.M.; Vyskocil, A.A.; Mahieu, P.; Lauwerys, R.R. Assessment of urinary retinol-binding protein as an index of proximal tubular injury. Clin. Chem. 1987, 33, 775–779.
[47]  Mutti, A. Detection of renal diseases in humans: developing markers and methods. Toxicol. Lett. 1989, 46, 177–191, doi:10.1016/0378-4274(89)90126-4.
[48]  Bedir, A.; Ozener, I.C.; Emerk, K. Urinary leucine aminopeptidase is a more sensitive indicator of early renal damage in non-insulin-dependent diabetics than microalbuminuria. Nephron 1996, 74, 110–113, doi:10.1159/000189288.
[49]  Carr, M.C.; Peters, C.A.; Retik, A.B.; Mandell, J. Urinary levels of the renal tubular enzyme N-acetyl-beta-D-glucosaminidase in unilateral obstructive uropathy. J. Urol. 1994, 151, 442–445.
[50]  Kilaru, P.; Bakris, G.L. Microalbuminuria and progressive renal disease. J. Hum. Hypertens. 1994, 8, 809–817.
[51]  Allegaert, K.; van den Anker, J.N.; Naulaers, G.; de Hoon, J. Determinants of drug metabolism in early neonatal life. Curr. Clin. Pharmacol. 2007, 2, 23–29, doi:10.2174/157488407779422294.
[52]  Hines, R.N.; McCarver, D.G. The ontogeny of human drug-metabolising enzymes: Phase I oxidative enzymes. J. Pharmacol. Exp. Ther. 2002, 300, 355–360, doi:10.1124/jpet.300.2.355.
[53]  Pacifici, G.M.; Franchi, M.; Colizzi, C.; Giuliani, L.; Rane, A. Sulfotransferase in humans: Development and tissue distribution. Pharmacology 1988, 36, 411–419, doi:10.1159/000138330.
[54]  Pacifici, G.M.; Franchi, M.; Rane, A. Development of the glucuronyltransferase and sulphotransferase towards 2-naphthol in human fetus. Dev. Pharmacol. Ther. 1990, 14, 108–114.
[55]  Cappiello, M.; Giuliani, L.; Rane, A.; Pacifici, G.M. Differential development of phenol and catechol sulphotransferases in human fetus. Dev. Pharmacol. Ther. 1991, 16, 83–88.
[56]  Pacifici, G.M.; Sawe, J.; Kager, L.; Rane, A. Morphine glucuronidation in human fetal and adult liver. Eur. J. Clin. Pharmacol. 1982, 22, 553–558, doi:10.1007/BF00609630.
[57]  Pacifici, G.M.; Rane, A. Renal glucuronidation of morphine in human foetus. Acta Pharmacol. Toxicol. 1982, 50, 155–160, doi:10.1111/j.1600-0773.1982.tb00957.x.
[58]  Pacifici, G.M.; Santerini, S.; Giuliani, L.; Rane, A. Thiomethyltransferase in humans: development and tissue distribution. Dev. Pharmacol. Ther. 1991, 17, 8–15.
[59]  Pacifici, G.M.; Romiti, P.; Giuliani, L.; Rane, A. Thiopurinemethyltransferase in humans development and tissue distribution. Dev. Pharmacol. Ther. 1991, 17, 16–23.
[60]  Pacifici, G.M.; Bencini, C.; Rane, A. Acetyltransferase in humans: Development and tissue distribution. Pharmacology 1986, 32, 283–291, doi:10.1159/000138181.
[61]  Aranda, J.V.; Lambert, C.; Perez, J.; Turmen, T.; Sitar, D.S. Metabolism and renal elimination of furosemide in the newborn infant. J. Pediatr. 1982, 101, 777–781, doi:10.1016/S0022-3476(82)80319-3.
[62]  Tuck, S.; Morselli, P.; Broquaire, M.; Vert, P. Plasma and urinary kinetics of furosemide in newborn infants. J. Pediatr. 1983, 103, 481–485, doi:10.1016/S0022-3476(83)80433-8.
[63]  Vert, P.; Broquaire, M.; Legagneur, M.; Morselli, P.L. Pharmacokinetics of furosemide in neonates. Eur. J. Clin. Pharmacol. 1982, 22, 39–45, doi:10.1007/BF00606423.
[64]  Peterson, R.G.; Simmons, M.A.; Rumack, B.H.; Levine, R.L.; Brooks, J.G. Pharmacology of furosemide in the premature newborn infant. J. Pediatr. 1980, 97, 139–143, doi:10.1016/S0022-3476(80)80154-5.
[65]  Aranda, J.V.; Perez, J.; Sitar, D.S.; Collinage, J.; Portuguez-Malavasi, A.; Duffy, B.; Dupont, C. Pharmacokinetic disposition and protein binding of furosemide in newborn infants. J. Pediatr. 1978, 93, 507–511, doi:10.1016/S0022-3476(78)81181-0.
[66]  Brater, D.C. Determinants of the overall response to furosemide: Pharmacokinetics and pharmacodynamics. Fed. Proc. 1983, 42, 1711–1713.
[67]  Mirochnick, M.H.; Miceli, J.J.; Kramer, P.A.; Chapron, D.J.; Raye, J.R. Renal response to furosemide in very low birth weight infants during chronic administration. Dev. Pharmacol. Ther. 1990, 15, 1–7.
[68]  Pacifici, G.M.; Viani, A.; Taddeucci-Brunelli, G.; Rizzo, G.; Carrai, M.; Schulz, H.U. Effects of development, aging, and renal and hepatic insufficiency as well as hemodialysis on the plasma concentrations of albumin and alpha 1-acid glycoprotein: Implications for binding of drugs. Ther. Drug Monit. 1986, 8, 259–263, doi:10.1097/00007691-198609000-00003.
[69]  Shankaran, S.; Poland, R.L. The displacement of bilirubin from albumin by furosemide. J. Pediatr. 1977, 90, 642–646, doi:10.1016/S0022-3476(77)80392-2.
[70]  Schwartz, P.A.; Rhodes, C.T.; Greene, D.S. Effect of free fatty acid concentration on furosemide binding to human serum albumin. Pharmacology 1981, 22, 364–370, doi:10.1159/000137517.
[71]  Viani, A.; Rizzo, G.; Carrai, M.; Pacifici, G.M. Interindividual variability in the concentrations of albumin and alpha-1-acid glycoprotein in patients with renal or liver disease, newborns and healthy subjects: implications for binding of drugs. Int. J. Clin. Pharmacol. Ther. Toxicol. 1992, 30, 128–133.
[72]  Pacifici, G.M.; Viani, A.; Taddeucci-Brunelli, G. Serum protein binding of furosemide in newborn infants and children. Dev. Pharmacol. Ther. 1987, 10, 413–421.
[73]  Viani, A.; Pacifici, G.M. Bilirubin displaces furosemide from serum protein: the effect is greater in newborn infants than adult subjects. Dev. Pharmacol. Ther. 1989, 14, 90–95.
[74]  Turmen, T.; Thom, P.; Louridas, A.T.; LeMorvan, P.; Aranda, J.V. Protein binding and bilirubin displacing properties of bumetanide and furosemide. J. Clin. Pharmacol. 1982, 22, 551–556, doi:10.1002/j.1552-4604.1982.tb02648.x.
[75]  Viani, A.; Pacifici, G.M. Quantitative contribution of endogenous compounds and hypoalbuminemia in reducing the binding of furosemide in the plasma of newborn infants. Dev. Pharmacol. Ther. 1992, 18, 39–43.
[76]  Ross, B.S.; Pollak, A.; Oh, W. The pharmacologic effects of furosemide therapy in the low-birth-weight infant. J. Pediatr. 1978, 92, 149–152, doi:10.1016/S0022-3476(78)80098-5.
[77]  Woo, W.C.; Dupont, C.; Collinge, J.; Aranda, J.V. Effects of furosemide in the newborn. Clin. Pharmacol. Ther. 1978, 23, 266–271.
[78]  Prandota, J.; Houin, G. Kinetics of urinary furosemide elimination in infants. Dev. Pharmacol. Ther. 1984, 7, 273–284.
[79]  Gulbis, B.E.; Spencer, A.P. Efficacy and safety of a furosemide continuous infusion following cardiac surgery. Ann. Pharmacother. 2006, 40, 1797–1803, doi:10.1345/aph.1G693.
[80]  Bellomo, R.; Raman, J.; Ronco, C. Intensive care unit management of the critically ill patient with fluid overload after open heart surgery. Cardiology 2001, 96, 169–176, doi:10.1159/000047400.
[81]  Toraman, F.; Evrenkaya, S.; Yuce, M.; Turek, O.; Aksoy, N.; Karabulut, H.; Demirhisar, O.; Alhan, C. Highly positive intraoperative fluid balance during cardiac surgery is associated with adverse outcome. Perfusion 2004, 19, 85–91, doi:10.1191/0267659104pf723oa.
[82]  Singh, N.C.; Kissoon, N.; al Mofada, S.; Bennett, M.; Bohn, D.J. Comparison of continuous versus intermittent furosemide administration in postoperative pediatric cardiac patients. Crit. Care Med. 1992, 20, 17–21, doi:10.1097/00003246-199201000-00010.
[83]  Wilson, N.J.; Adderley, R.J.; McEniery, J.A. Supraventricular tachycardia associated with continuous furosemide infusion. Can. J. Anaesth. 1991, 38, 502–505, doi:10.1007/BF03007589.
[84]  Luciani, G.B.; Nichani, S.; Chang, A.C.; Wells, W.J.; Newth, C.J.; Starnes, V.A. Continuous versus intermittent furosemide infusion in critically ill infants after open heart operations. Ann. Thorac. Surg. 1997, 64, 1133–1139, doi:10.1016/S0003-4975(97)00714-5.
[85]  Martin, S.J.; Danziger, L.H. Continuous infusion of loop diuretics in the critically ill, a review of the literature. Crit. Care Med. 1994, 22, 1323–1309, doi:10.1097/00003246-199408000-00017.
[86]  Francis, G.S.; Siegel, R.M.; Goldsmith, S.R.; Olivari, M.T.; Levine, T.B.; Cohn, J.N. Acute vasoconstrictor response to intravenous furosemide in patients with chronic congestive heart failure. Activation of the neurohumoral axis. Ann. Intern. Med. 1985, 103, 1–6, doi:10.7326/0003-4819-103-1-1.
[87]  Copeland, J.G.; Campbell, D.W.; Plachetka, J.R.; Salomon, N.W.; Larson, D.F. Diuresis with continuous infusion of furosemide after cardiac surgery. Am. J. Surg. 1983, 146, 796–799, doi:10.1016/0002-9610(83)90344-6.
[88]  Klinge, J.M.; Scharf, J.; Hofbeck, M.; Gerling, S.; Bonakdar, S.; Singer, H. Intermittent administration of furosemide versus continuous infusion in the postoperative management of children following open heart surgery. Intensive Care Med. 1997, 23, 693–697, doi:10.1007/s001340050395.
[89]  Van Meyel, J.J.; Smits, P.; Dormans, T.; Gerlag, P.G.; Russel, F.G.; Gribnau, F.W. Continuous infusion of furosemide in the treatment of patients with congestive heart failure and diuretic resistance. J. Intern. Med. 1994, 235, 329–334, doi:10.1111/j.1365-2796.1994.tb01082.x.
[90]  Lahav, M.; Regev, A.; Ra’anani, P.; Theodor, E. Intermittent administration of furosemide vs continuous infusion preceded by a loading dose for congestive heart failure. Chest 1992, 102, 725–731, doi:10.1378/chest.102.3.725.
[91]  Vanpeè, M.; Blennow, M.; Linné, T.; Herin, P.; Aperia, A. Renal function in very low birth weight infants: normal maturity reached during early childhood. J. Pediatr. 1992, 121, 784–788, doi:10.1016/S0022-3476(05)81916-X.
[92]  Van der Vorst, M.M.; Ruys-Dudok van Heel, I.; Kist-van Holthe, J.E.; den Hartigh, J.; Schoemaker, R.C.; Cohen, A.F.; Burggraaf, J. Continuous intravenous furosemide in haemodynamically unstable children after cardiac surgery. Intensive Care Med. 2001, 27, 711–715, doi:10.1007/s001340000819.
[93]  Van der Vorst, M.M.; Kist-van Holthe, J.E.; den Hartigh, J.; van der Heijden, A.J.; Cohen, A.F.; Burggraaf, J. Absence of tolerance and toxicity to high-dose continuous intravenous furosemide in haemodynamically unstable infants after cardiac surgery. Br. J. Clin. Pharmacol. 2007, 64, 796–803.
[94]  Van der Vorst, M.M.; Wildschut, E.; Houmes, R.J.; Gischler, S.J.; Kist-van Holthe, J.E.; Burggraaf, J.; van der Heijden, A.J.; Tibboel, D. Evaluation of furosemide regimens in neonates treated with extracorporeal membrane oxygenation. Crit. Care 2006, 10, R168, doi:10.1186/cc5115.
[95]  Kron, B.G.; Sj?str?m, P.A.; Karlberg, B.E.; Odlind, B.G. Acute tolerance to furosemide. Pretreatment with captopril or prazosin does not influence diuresis and natriuresis. Scand. J. Urol. Nephrol. 1994, 28, 337–344, doi:10.3109/00365599409180509.
[96]  Hammarlund, M.M.; Odlind, B.; Paalzow, L.K. Acute tolerance to furosemide diuresis in humans. Pharmacokinetic-pharmacodynamic modeling. J. Pharmacol. Exp. Ther. 1985, 233, 447–453.
[97]  Bahrami, K.R.; van Meurs, K.P. ECMO for neonatal respiratory failure. Semin. Perinatol. 2005, 29, 15–23, doi:10.1053/j.semperi.2005.02.004.
[98]  McNally, H.; Bennett, C.C.; Elbourne, D.; Field, D.J. UK Collaborative ECMO Trial Group UK collaborative randomised trial of neonates extracorporeal membrane oxygenation. Lancet 1996, 684, 75–82.
[99]  Elbourne, D.; Field, D.; Mugford, M. Extracorporeal membrane oxygenation for severe respiratory failure in newborn ifants. Cochchrane Database Syst. Rev. 2002, 1, CD001340.
[100]  Van der Vorst, M.M.; den Hartigh, J.; Wildschut, E.; Tibboel, D.; Burggraaf, J. An exploratory study with an adaptive continuous intravenous furosemide regimen in neonates treated with extracorporeal membrane oxygenation. Crit. Care 2007, 11, R111, doi:10.1186/cc6146.
[101]  Buck, M.L. Pharmacokinetic changes during extracorporeal membrane oxygenation: implications for drug therapy of neonates. Clin. Pharmacokinet. 2003, 42, 403–417, doi:10.2165/00003088-200342050-00001.
[102]  Kugelman, A.; Durand, M.; Garg, M. Pulmonary effect of inhaled furosemide in ventilated infants with severe bronchopulmonary dysplasia. Pediatrics 1997, 99, 71–75, doi:10.1542/peds.99.1.71.
[103]  Bar, A.; Srugo, I.; Amirav, I.; Tzverling, C.; Naftali, G.; Kugelman, A. Inhaled furosemide in hospitalized infants with viral bronchiolitis: a randomized, double-blind, placebo-controlled pilot study. Pediatr. Pulmonol. 2008, 43, 261–267, doi:10.1002/ppul.20765.
[104]  Prabhu, V.G.; Keszler, M.; Dhanireddy, R. Pulmonary function changes after nebulised and intravenous frusemide in ventilated premature infants. Arch. Dis. Child. Fetal Neonatal Ed. 1997, 77, F32–F35, doi:10.1136/fn.77.1.F32.
[105]  Ohki, Y.; Nako, Y.; Koizumi, T.; Morikawa, A. The effect of aerosolized furosemide in infants with chronic lung disease. Acta Paediatr. 1997, 86, 656–660, doi:10.1111/j.1651-2227.1997.tb08951.x.
[106]  Rastogi, A.; Luayon, M.; Ajayi, O.A.; Pildes, R.S. Nebulized furosemide in infants with bronchopulmonary dysplasia. J. Pediatr. 1994, 125, 976–979, doi:10.1016/S0022-3476(05)82018-9.
[107]  Belik, J.; Spitzer, A.R.; Clark, B.J.; Gewitz, M.H.; Fox, W.W. Effect of early furosemide administration in neonates with respiratory distress syndrome. Pediatr. Pulmonol. 1987, 3, 219–225, doi:10.1002/ppul.1950030405.
[108]  Lee, B.S.; Byun, S.Y.; Chung, M.L.; Chang, J.Y.; Kim, H.Y.; Kim, E.A.; Kim, K.S.; Pi, S.Y. Effect of furosemide on ductal closure and renal function in indomethacin-treated preterm infants during the early neonatal period. Neonatology 2010, 98, 191–199, doi:10.1159/000289206.
[109]  Brion, L.P.; Campbell, D.E. Furosemide for symptomatic patent ductus arteriosus in indomethacin-treated infants. Cochrane Database Syst. Rev. 2001, 3, CD001148.
[110]  Green, T.P.; Thompson, T.R.; Johnson, D.E.; Lock, J.E. Furosemide promotes patent ductus arteriosus in premature infants with the respiratory-distress syndrome. N. Engl. J. Med. 1983, 308, 743–748, doi:10.1056/NEJM198303313081303.
[111]  Friedman, Z.; Demers, L.M.; Marks, K.H.; Uhrmann, S.; Maisels, M.J. Urinary excretion of prostaglandin E following the administration of furosemide and indomethacin to sick low-birth-weight infants. J. Pediatr. 1978, 93, 512–515, doi:10.1016/S0022-3476(78)81182-2.
[112]  Yeh, T.F.; Wilks, A.; Singh, J.; Betkerur, M.; Lilien, L.; Pildes, R.S. Furosemide prevents the renal side-effects of indomethacin therapy in premature infants with patent ductus arteriosus. J. Pediatr. 1982, 101, 433–437, doi:10.1016/S0022-3476(82)80079-6.
[113]  Schwartz, G.H.; David, D.S.; Riggio, R.R.; Stenzel, K.H.; Rubin, A.L. Ototoxicity induced by furosemide. N. Engl. J. Med. 1970, 282, 1413–1414, doi:10.1056/NEJM197006182822506.
[114]  Morelli, O.H.; Moledo, L.I.; Alanis, E.; Gaston, O.L.; Terzaghi, O. Acute effects of high doses of frusemide in patients with chronic renal failure. Postgrad. Med. J. 1971, 47, 29–35.
[115]  Fries, D.; Pozet, N.; Dubois, N.; Traeger, J. The use of large doses of frusemide in acute renal failure. Postgrad. Med. J. 1971, 47, 18–20.
[116]  Rastogi, S.P.; Volans, G.; Elliott, R.W.; Eccleston, D.W.; Ashcroft, R.; Webster, D.; Kerr, D.N. High dose frusemide in the treatment of hypertension in chronic renal insufficiency and of terminal renal failure. Postgrad. Med. J. 1971, 47, 45–53.
[117]  Rifkin, S.I.; de Quesada, A.M.; Pickering, M.J.; Shires, D.L., Jr. Deafness associated with oral furosemide. South Med. J. 1978, 71, 86–88, doi:10.1097/00007611-197801000-00029.
[118]  Keefe, P.E. Ototoxicity from oral furosemide. Drug Intell. Clin. Pharm. 1978, 12, 428.
[119]  Gallagher, K.L.; Jones, J.K. Furosemide-induced ototoxicity. Ann. Intern. Med. 1979, 91, 744–745, doi:10.7326/0003-4819-91-5-744.
[120]  Wigand, M.E.; Heidland, A. Ototoxic side-effects of high doses of frusemide in patients with uremia. Posgrad. Med. J. 1971, 47, 54–56.
[121]  Lloyd-Mostyn, R.H.; Lord, I.J. Ototoxicity of intravenous frusemide. Lancet 1971, 2, 1156, doi:10.1016/S0140-6736(71)91317-1.
[122]  Quick, C.A.; Hoppe, W. Permanent deafness associated with furosemide administration. Ann. Otol. Rhinol. Laryngol. 1975, 84, 94–101.
[123]  Kshirsagar, N.A.; Dahanukar, S.A.; Shah, B.P.; Vora, K.K.; Karandikar, S.M.; Acharya, V.N.; Sheth, U.K. Furosemide pharmacokinetics and its relevance to ototoxicity. J. Postgrad. Med. 1978, 24, 20–23.
[124]  Borradori, C.; Fawer, C.L.; Buclin, T.; Calame, A. Risk factors of sensorineural hearing loss in preterm infants. Biol. Neonate 1997, 71, 1–10.
[125]  Rybak, L.P. Pathophysiology of furosemide ototoxicicy. J. Otolaryngol. 1982, 11, 127–133.
[126]  Rybak, L.P.; Whitworth, C.; Scott, V.; Weberg, A. Ototoxicity of furosemide during development. Laryngoscope 1991, 101, 1164–1174.
[127]  Giapros, V.; Tsoni, C.; Challa, A.; Cholevas, V.; Argyropoulou, M.; Papadopoulou, F.; Siomou, E.; Drougia, A.; Andronikou, S. Renal function and kidney length in preterm infants with nephrocalcinosis, a longitudinal study. Pediatr. Nephrol. 2011, 26, 1873–1880, doi:10.1007/s00467-011-1895-9.
[128]  Nasseri, F.; Azhir, A.; Rahmanian, S.; Iranpour, R.; Adibi, A. Nephrocalcinosis in very low birth weight infants. Saudi J. Kidney Dis. Transpl. 2010, 21, 284–289.
[129]  Gimpel, C.; Krause, A.; Franck, P.; Krueger, M.; von Schnakenburg, C. Exposure to furosemide as the strongest risk factor for nephrocalcinosis in preterm infants. Pediatr. Int. 2010, 52, 51–56, doi:10.1111/j.1442-200X.2009.02886.x.
[130]  Ketkeaw, K.; Thaithumyanon, P.; Punnahitananda, S. Nephrocalcinosis in very low birth weight infants: a single center experience. J. Med. Assoc. Thai. 2004, 87, S72–S77.
[131]  Pope, J.C., 4th.; Trusler, L.A.; Klein, A.M.; Walsh, W.F.; Yared, A.; Brock, J.W., 3rd. The natural history of nephrocalcinosis in premature infants treated with loop diuretics. J. Urol. 1996, 156, 709–712, doi:10.1016/S0022-5347(01)65792-6.
[132]  Alon, U.S.; Scagliotti, D.; Garola, R.E. Nephrocalcinosis and nephrolithiasis in infants with congestive heart failure treated with furosemide. J. Pediatr. 1994, 125, 149–151, doi:10.1016/S0022-3476(94)70143-1.
[133]  Downing, G.J.; Egelhoff, J.C.; Daily, D.K.; Thomas, M.K.; Alon, U. Kidney function in very low birth weight infants with furosemide-related renal calcifications at ages 1 to 2 years. J. Pediatr. 1992, 120, 599–604, doi:10.1016/S0022-3476(05)82490-4.
[134]  Downing, G.J.; Egelhoff, J.C.; Daily, D.K.; Alon, U. Furosemide-related renal calcifications in the premature infant. A longitudinal ultrasonographic study. Pediatr. Radiol. 1991, 21, 563–565, doi:10.1007/BF02012598.
[135]  Jequier, S.; Kaplan, B.S. Echogenic renal pyramids in children. J. Clin. Ultrasound 1991, 19, 85–92, doi:10.1002/jcu.1870190205.
[136]  Kenney, I.J.; Aiken, C.G.; Lenney, W. Frusemide-induced nephrocalcinosis in very low birth weight infants. Pediatr. Radiol. 1988, 18, 323–325, doi:10.1007/BF02389002.
[137]  Hufnagle, K.G.; Khan, S.N.; Penn, D.; Cacciarelli, A.; Williams, P. Renal calcifications: A complication of long-term furosemide therapy in preterm infants. Pediatrics 1982, 70, 360–363.
[138]  Chang, H.Y.; Hsu, C.H.; Tsai, J.D.; Li, S.T.; Hung, H.Y.; Kao, H.A.; Chang, J.H.; Chung, H.Y.; Wang, H.K. Renal calcification in very low birth weight infants. Pediatr. Neonatol. 2011, 52, 145–149, doi:10.1016/j.pedneo.2011.03.004.
[139]  Srivastava, T.; Kats, A.; Martin, T.J.; Pompolo, S.; Alon, U.S. Parathyroid-hormone-related protein-mediated hypercalcemia in benign congenital mesoblastic nephroma. Pediatr. Nephrol. 2011, 26, 799–803, doi:10.1007/s00467-010-1728-2.
[140]  Nair, S.; Nair, S.G.; Borade, A.; Ramakrishnan, K. Hypercalcemia and metastatic calcification in a neonate with subcutaneous fat necrosis. Indian J. Pediatr. 2009, 76, 1155–1157, doi:10.1007/s12098-009-0278-8.
[141]  Pradhan, M.; Leonard, M.B. Calcium-free hemodialysis for hypercalcemia of malignancy in a newborn. Pediatr. Nephrol. 2003, 18, 474–476.
[142]  Horinek, D.; Cihar, M.; Tichy, M. Current methods in the treatment of posthemorrhagic hydrocephalus in infants. Bratisl. Lek. Listy 2003, 104, 347–351.
[143]  Whitelaw, A.; Kennedy, C.R.; Brion, L.P. Diuretic therapy for newborn infants with posthemorrhagic ventricular dilatation. Cochrane Database Syst. Rev. 2001, 2, CD002270.
[144]  Libenson, M.H.; Kaye, E.M.; Rosman, N.P.; Gilmore, H.E. Acetazolamide and furosemide for posthemorragic hydrocephalus of the newborn. Pediatr. Neurol. 1999, 20, 185–191, doi:10.1016/S0887-8994(98)00127-1.
[145]  Stafstrom, C.E.; Gilmore, H.E.; Kurtin, P.S. Nephrocalcinosis complicating medical treatment of posthemorragic hydrocephalus. Pediatr. Neurol. 1992, 8, 179–182, doi:10.1016/0887-8994(92)90064-6.
[146]  Shinnar, S.; Gammon, K.; Bergman, E.W., Jr.; Epstein, M.; Freeman, J.M. Management of hydrocephalus in infancy: use of acetazolamide and furosemide to avoid cerebrospinal fluid shunts. J. Pediatr. 1985, 107, 31–37, doi:10.1016/S0022-3476(85)80609-0.
[147]  Eades, S.K.; Christensen, M.L. The clinical pharmacology of loop diuretics in the pediatric patient. Pediatr. Nephrol. 1998, 12, 603–616, doi:10.1007/s004670050514.
[148]  Van der Vorst, M.M.; Kist, J.E.; van der Heijden, A.J.; Burggraaf, J. Diuretics in pediatrics: current knowledge and future prospects. Paediatr. Drugs 2006, 8, 245–264, doi:10.2165/00148581-200608040-00004.
[149]  Atkinson, S.A.; Shah, J.K.; McGee, C.; Steele, B.T. Mineral excretion in premature infants receiving various diuretic therapies. J. Pediatr. 1988, 113, 540–545, doi:10.1016/S0022-3476(88)80648-6.
[150]  Cappiello, M.; Giuliani, L.; Rane, A.; Pacifici, G.M. 5′-Diphosphoglucuronic acid (UDPGA) in the human fetal liver, kidney and placenta. Eur. J. Drug Metab. Pharmacokin. 2000, 25, 161–164, doi:10.1007/BF03192308.
[151]  Beermann, B.; Dalén, E.; Lindstr?m, B.; Rosén, A. On the fate of furosemide in man. Eur. J. Clin. Pharmacol. 1975, 9, 51–61.
[152]  Beermann, B.; Dalén, E.; Lindstr?m, B. Elimination of furosemide in healthy subjects and in those with renal failure. Clin. Pharmacol. Ther. 1977, 22, 70–78.
[153]  Calesnick, B.; Christensen, J.A.; Richter, M. Absorption and excretion of furosemide-S35 in human subjects. Proc. Soc. Exp. Biol. Med. 1966, 123, 17–22, doi:10.3181/00379727-123-31391.
[154]  Hook, J.B.; Williamson, H.E. Influence of probenecid and alterations in acid-base balance of the saluretic activity of furosemide. J. Pharmacol. Exp. Ther. 1965, 149, 404–408.
[155]  Segar, J.L.; Robillard, J.E.; Johnson, K.J.; Bell, E.F.; Chemtob, S. Addition of metolazone to overcome tolerance to furosemide in infants with bronchopulmonary dysplasia. J. Pediatr. 1992, 120, 966–973, doi:10.1016/S0022-3476(05)81972-9.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133