全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pharmaceutics  2013 

Surface Engineering of Liposomes for Stealth Behavior

DOI: 10.3390/pharmaceutics5040542

Keywords: stealth liposomes, complement proteins, poly(ethylene glycol), lipopolymer

Full-Text   Cite this paper   Add to My Lib

Abstract:

Liposomes are used as a delivery vehicle for drug molecules and imaging agents. The major impetus in their biomedical applications comes from the ability to prolong their circulation half-life after administration. Conventional liposomes are easily recognized by the mononuclear phagocyte system and are rapidly cleared from the blood stream. Modification of the liposomal surface with hydrophilic polymers delays the elimination process by endowing them with stealth properties. In recent times, the development of various materials for surface engineering of liposomes and other nanomaterials has made remarkable progress. Poly(ethylene glycol)-linked phospholipids (PEG-PLs) are the best representatives of such materials. Although PEG-PLs have served the formulation scientists amazingly well, closer scrutiny has uncovered a few shortcomings, especially pertaining to immunogenicity and pharmaceutical characteristics (drug loading, targeting, etc.) of PEG. On the other hand, researchers have also begun questioning the biological behavior of the phospholipid portion in PEG-PLs. Consequently, stealth lipopolymers consisting of non-phospholipids and PEG-alternatives are being developed. These novel lipopolymers offer the potential advantages of structural versatility, reduced complement activation, greater stability, flexible handling and storage procedures and low cost. In this article, we review the materials available as alternatives to PEG and PEG-lipopolymers for effective surface modification of liposomes.

References

[1]  Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 2012, 63, 185–198, doi:10.1146/annurev-med-040210-162544.
[2]  Perche, F.; Torchilin, V.P. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J. Drug Deliv. 2013, 2013, doi:10.1155/2013/705265.
[3]  Lasic, D.D.; Needham, D. The “stealth” liposome: A prototypical biomaterial. Chem. Rev. 1995, 95, 2601–2628, doi:10.1021/cr00040a001.
[4]  Woodle, M.C.; Lasic, D.D. Sterically stabilized liposomes. Biochim. Biophys. Acta 1992, 1113, 171–199, doi:10.1016/0304-4157(92)90038-C.
[5]  Salmaso, S.; Caliceti, P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J. Drug Deliv. 2013, 2013, doi:10.1155/2013/374252.
[6]  Markiewski, M.M.; Nilsson, B.; Nilsson Ekdahl, K.; Mollnes, T.E.; Lambris, J.D. Complement and coagulation: Strangers or partners in crime? Trends Immunol. 2007, 28, 184–192, doi:10.1016/j.it.2007.02.006.
[7]  Nilsson, B.; Ekdahl, K.N.; Mollnes, T.E.; Lambris, J.D. The role of complement in biomaterial-induced inflammation. Mol. Immunol. 2007, 44, 82–94, doi:10.1016/j.molimm.2006.06.020.
[8]  Sugahara, S.; Kajiki, M.; Kuriyama, H.; Kobayashi, T.R. Complete regression of xenografted human carcinomas by a paclitaxel-carboxymethyl dextran conjugate (AZ10992). J. Control. Release 2007, 117, 40–50, doi:10.1016/j.jconrel.2006.10.009.
[9]  Kang, E.-C.; Aklyoshi, K.; Sunamoto, J. Surface coating of liposomes with hydrophobized polysaccharides. J. Bioact. Compat. Polym. 1997, 12, 14–26.
[10]  Taira, M.C.; Chiaramoni, N.S.; Pecuch, K.M.; Alonso-Romanowski, S. Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Deliv. 2004, 11, 123–128, doi:10.1080/10717540490280769.
[11]  Allen, T.M.; Hansen, C.; Rutledge, J. Liposomes with prolonged circulation times: Factors affecting uptake by reticuloendothelial and other tissues. Biochim. Biophys. Acta 1989, 981, 27–35, doi:10.1016/0005-2736(89)90078-3.
[12]  Gabizon, A.; Papahadjopoulos, D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. USA 1988, 85, 6949–6953, doi:10.1073/pnas.85.18.6949.
[13]  Yamauchi, H.; Yano, T.; Kato, T.; Tanaka, I.; Nakabayashi, S.; Higashi, K.; Miyoshi, S.; Yamada, H. Effects of sialic acid derivative on long circulation time and tumor concentration of liposomes. Int. J. Pharm. 1995, 113, 141–148, doi:10.1016/0378-5173(94)00188-B.
[14]  Chonn, A.; Semple, S.C.; Cullis, P.R. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J. Biol. Chem. 1992, 267, 18759–18765.
[15]  Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 2006, 1, 297–315, doi:10.2217/17435889.1.3.297.
[16]  Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 2001, 53, 283–318.
[17]  Lee, J.H.; Lee, H.B.; Andrade, J.D. Blood compatibility of polyethylene oxide surfaces. Prog. Polym. Sci. 1995, 20, 1043–1079, doi:10.1016/0079-6700(95)00011-4.
[18]  Sofia, S.J.; Premnath, V.; Merrill, E.W. Poly(ethylene oxide) grafted to silicon surfaces: Grafting density and protein adsorption. Macromolecules 1998, 31, 5059–5070, doi:10.1021/ma971016l.
[19]  Alcantar, N.A.; Aydil, E.S.; Israelachvili, J.N. Polyethylene glycol-coated biocompatible surfaces. J. Biomed. Mater. Res. 2000, 51, 343–351, doi:10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D.
[20]  Dreborg, S.; Akerblom, E.B. Immunotherapy with monomethoxypolyethylene glycol modified allergens. Crit. Rev. Ther. Drug Carr. Syst. 1990, 6, 315–365.
[21]  Yamaoka, T.; Tabata, Y.; Ikada, Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci. 1994, 83, 601–606.
[22]  Bar-Ilan, A.; Zilkha, A. Anionic polymerization of ethylene oxide by anhydrous potassium hydroxide. J. Macromol. Sci. 1970, 4, 1727–1741, doi:10.1080/00222337008059518.
[23]  Zalipsky, S. Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes. Bioconjug. Chem. 1993, 4, 296–299, doi:10.1021/bc00022a008.
[24]  Zalipsky, S. Functionalized poly(ethylene glycols) for preparation of biologically relevant conjugates. Bioconjug. Chem. 1995, 6, 150–165, doi:10.1021/bc00032a002.
[25]  Moghimi, S.M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 2003, 42, 463–478, doi:10.1016/S0163-7827(03)00033-X.
[26]  Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48, doi:10.1016/j.addr.2012.09.037.
[27]  Gabizon, A.; Martin, F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 1997, 54, 15–21, doi:10.2165/00003495-199700544-00005.
[28]  Allen, C.; dos Santos, N.; Gallagher, R.; Chiu, G.N.; Shu, Y.; Li, W.M.; Johnstone, S.A.; Janoff, A.S.; Mayer, L.D.; Webb, M.S.; et al. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci. Rep. 2002, 22, 225–250, doi:10.1023/A:1020186505848.
[29]  De Gennes, P.G. Conformations of polymers attached to an interface. Macromolecules 1980, 13, 1069–1075, doi:10.1021/ma60077a009.
[30]  Garbuzenko, O.; Barenholz, Y.; Priev, A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem. Phys. Lipids 2005, 135, 117–129, doi:10.1016/j.chemphyslip.2005.02.003.
[31]  Marsh, D.; Bartucci, R.; Sportelli, L. Lipid membranes with grafted polymers: Physicochemical aspects. Biochim. Biophys. Acta 2003, 1615, 33–59, doi:10.1016/S0005-2736(03)00197-4.
[32]  Wang, R.; Xiao, R.; Zeng, Z.; Xu, L.; Wang, J. Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int. J. Nanomed. 2012, 7, 4185–4198.
[33]  Ambegia, E.; Ansell, S.; Cullis, P.; Heyes, J.; Palmer, L.; MacLachlan, I. Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression. Biochim. Biophys. Acta 2005, 1669, 155–163, doi:10.1016/j.bbamem.2005.02.001.
[34]  Heyes, J.; Hall, K.; Tailor, V.; Lenz, R.; MacLachlan, I. Synthesis and characterization of novel poly(ethylene glycol)-lipid conjugates suitable for use in drug delivery. J. Control. Release 2006, 112, 280–290, doi:10.1016/j.jconrel.2006.02.012.
[35]  Nag, O.K.; Yadav, V.R.; Hedrick, A.; Awasthi, V. Post-modification of preformed liposomes with novel non-phospholipid poly(ethylene glycol)-conjugated hexadecylcarbamoylmethyl hexadecanoic acid for enhanced circulation persistence in vivo. Int. J. Pharm. 2013, 446, 119–129, doi:10.1016/j.ijpharm.2013.02.026.
[36]  Karathanasis, E.; Ayyagari, A.L.; Bhavane, R.; Bellamkonda, R.V.; Annapragada, A.V. Preparation of in vivo cleavable agglomerated liposomes suitable for modulated pulmonary drug delivery. J. Control. Release 2005, 103, 159–175, doi:10.1016/j.jconrel.2004.11.009.
[37]  Zalipsky, S.; Qazen, M.; Walker, J.A., 2nd; Mullah, N.; Quinn, Y.P.; Huang, S.K. New detachable poly(ethylene glycol) conjugates: Cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug. Chem. 1999, 10, 703–707, doi:10.1021/bc990031n.
[38]  Belsito, S.; Bartucci, R.; Sportelli, L. Lipid chain length effect on the phase behaviour of PCs/PEG:2000-PEs mixtures. A spin label electron spin resonance and spectrophotometric study. Biophys. Chem. 2001, 93, 11–22, doi:10.1016/S0301-4622(01)00201-0.
[39]  Hu, Q.; Shew, C.R.; Bally, M.B.; Madden, T.D. Programmable fusogenic vesicles for intracellular delivery of antisense oligodeoxynucleotides: Enhanced cellular uptake and biological effects. Biochim. Biophys. Acta 2001, 1514, 1–13, doi:10.1016/S0005-2736(01)00294-2.
[40]  Shimada, K.; Matsuo, S.; Sadzuka, Y.; Miyagishima, A.; Nozawa, Y.; Hirota, S.; Sonobe, T. Determination of incorporated amounts of poly(ethylene glycol)-derivatized lipids in liposomes for the physicochemical characterization of stealth liposomes. Int. J. Pharm. 2000, 203, 255–263, doi:10.1016/S0378-5173(00)00466-X.
[41]  Webb, M.S.; Saxon, D.; Wong, F.M.P.; Lim, H.J.; Wang, Z.; Bally, M.B.; Choi, L.S.L.; Cullis, P.R.; Mayer, L.D. Comparison of different hydrophobic anchors conjugated to poly(ethylene glycol): Effects on the pharmacokinetics of liposomal vincristine. Biochim. Biophys. Acta 1998, 1372, 272–282, doi:10.1016/S0005-2736(98)00077-7.
[42]  Zhao, X.; Harris, M. Novel Degradable Poly(Ethylene Glycol) Esters for Drug Delivery. In Poly(Ethylene Glycol); American Chemical Society: Washington, DC, USA, 1997; Volume 680, pp. 458–472.
[43]  Moghimi, S.M.; Hamad, I.; Andresen, T.L.; Jorgensen, K.; Szebeni, J. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents pegylated liposome-mediated complement activation and anaphylatoxin production. FASEB J. 2006, 20, 2591–2593, doi:10.1096/fj.06-6186fje.
[44]  Jeon, S.I.; Andrade, J.D. Protein—Surface interactions in the presence of polyethylene oxide: II. Effect of protein size. J. Colloid Interface Sci. 1991, 142, 159–166, doi:10.1016/0021-9797(91)90044-9.
[45]  Allen, T.M.; Hansen, C.; Martin, F.; Redemann, C.; Yau-Young, A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta 1991, 1066, 29–36, doi:10.1016/0005-2736(91)90246-5.
[46]  Sugiyama, I.; Sadzuka, Y. Correlation of fixed aqueous layer thickness around PEG-modified liposomes with in vivo efficacy of antitumor agent-containing liposomes. Curr. Drug Discov. Technol. 2011, 8, 357–366, doi:10.2174/157016311798109344.
[47]  Sugiyama, I.; Sadzuka, Y. Change in the character of liposomes as a drug carrier by modifying various polyethyleneglycol-lipids. Biol. Pharm. Bull. 2013, 36, 900–906, doi:10.1248/bpb.b13-00084.
[48]  Sadzuka, Y.; Nakade, A.; Hirama, R.; Miyagishima, A.; Nozawa, Y.; Hirota, S.; Sonobe, T. Effects of mixed polyethyleneglycol modification on fixed aqueous layer thickness and antitumor activity of doxorubicin containing liposome. Int. J. Pharm. 2002, 238, 171–180, doi:10.1016/S0378-5173(02)00075-3.
[49]  Sadzuka, Y.; Nakade, A.; Tsuruda, T.; Sonobe, T. Study on the characterization of mixed polyethyleneglycol modified liposomes containing doxorubicin. J. Control. Release 2003, 91, 271–280, doi:10.1016/S0168-3659(03)00248-7.
[50]  Zeisig, R.; Shimada, K.; Hirota, S.; Arndt, D. Effect of sterical stabilization on macrophage uptake in vitro and on thickness of the fixed aqueous layer of liposomes made from alkylphosphocholines. Biochim. Biophys. Acta 1996, 1285, 237–245, doi:10.1016/S0005-2736(96)00167-8.
[51]  Awasthi, V.D.; Garcia, D.; Goins, B.A.; Phillips, W.T. Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits. Int. J. Pharm. 2003, 253, 121–132, doi:10.1016/S0378-5173(02)00703-2.
[52]  Silvander, M.; Johnsson, M.; Edwards, K. Effects of PEG-lipids on permeability of phosphatidylcholine/cholesterol liposomes in buffer and in human serum. Chem. Phys. Lipids 1998, 97, 15–26, doi:10.1016/S0009-3084(98)00088-7.
[53]  Er, Y.; Barnes, T.J.; Fornasiero, D.; Prestidge, C.A. The encapsulation and release of guanosine from pegylated liposomes. J. Liposome Res. 2009, 19, 29–36, doi:10.1080/08982100802673940.
[54]  Mathur, R.; Capasso, P. Nonphospholipid Liposomes: Properties and Potential Use in Flavor Encapsulation. In Flavor Technology; Ho, C.T., Tan, C.T., Tong, C.H., Eds.; American Chemical Society: Washington, DC, USA, 1997; pp. 219–230.
[55]  Bonte, F.; Juliano, R.L. Interactions of liposomes with serum proteins. Chem. Phys. Lipids 1986, 40, 359–372, doi:10.1016/0009-3084(86)90079-4.
[56]  Chonn, A.; Cullis, P.R.; Devine, D.V. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J. Immunol. 1991, 146, 4234–4241.
[57]  Awasthi, V.; Goins, B.; Phillips, W.T. Insertion of poly (ethylene glycol)-lipid reduces the liposome-encapsulated hemoglobin-induced thrombocytopenic reaction. Am. J. Pharmacol. Toxicol. 2007, 2, 98–105.
[58]  Ishida, T.; Harashima, H.; Kiwada, H. Liposome clearance. Biosci. Rep. 2002, 22, 197–224, doi:10.1023/A:1020134521778.
[59]  Funato, K.; Yoda, R.; Kiwada, H. Contribution of complement system on destabilization of liposomes composed of hydrogenated egg phosphatidylcholine in rat fresh plasma. Biochim. Biophys. Acta 1992, 1103, 198–204.
[60]  Matsuo, H.; Funato, K.; Harashima, H.; Kiwada, H. The complement- but not mannose receptor-mediated phagocytosis is involved in the hepatic uptake of cetylmannoside-modified liposomes in situ. J. Drug Target. 1994, 2, 141–146.
[61]  Liu, D.; Song, Y.K.; Liu, F. Antibody dependent, complement mediated liver uptake of liposomes containing gm1. Pharm. Res. 1995, 12, 1775–1780, doi:10.1023/A:1016286310475.
[62]  Carlson, P.A.; Gelb, M.H.; Yager, P. Zero-order interfacial enzymatic degradation of phospholipid tubules. Biophys. J. 1997, 73, 230–238, doi:10.1016/S0006-3495(97)78063-9.
[63]  Bastiat, G.; Oliger, P.; Karlsson, G.; Edwards, K.; Lafleur, M. Development of non-phospholipid liposomes containing a high cholesterol concentration. Langmuir 2007, 23, 7695–7699, doi:10.1021/la700824m.
[64]  Gupta, R.K.; Varanelli, C.L.; Griffin, P.; Wallach, D.F.; Siber, G.R. Adjuvant properties of non-phospholipid liposomes (novasomes) in experimental animals for human vaccine antigens. Vaccine 1996, 14, 219–225, doi:10.1016/0264-410X(95)00182-Z.
[65]  Marianecci, C.; Rinaldi, F.; di Marzio, L.; Pozzi, D.; Caracciolo, G.; Manno, D.; Dini, L.; Paolino, D.; Celia, C.; Carafa, M. Interaction of ph-sensitive non-phospholipid liposomes with cellular mimetic membranes. Biomed. Microdevices 2013, 15, 299–309, doi:10.1007/s10544-012-9731-y.
[66]  Carafa, M.; Marzio, L.D.; Marianecci, C.; Cinque, B.; Lucania, G.; Kajiwara, K.; Cifone, M.G.; Santucci, E. Designing novel ph-sensitive non-phospholipid vesicle: Characterization and cell interaction. Eur. J. Pharm. Sci. 2006, 28, 385–393.
[67]  Komeda, C.; Ikeda, A.; Kikuchi, J.; Ishida-Kitagawa, N.; Tatebe, H.; Shiozaki, K.; Akiyama, M. A photo-triggerable drug carrier based on cleavage of PEG lipids by photosensitiser-generated reactive singlet oxygen. Org. Biomol. Chem. 2013, 11, 2567–2570, doi:10.1039/c2ob27199k.
[68]  Philippot, J.R.; Milhaud, P.G.; Puyal, C.O.; Wallach, D.F.H. Liposomes as Tools in Basic Research and Industry; Philippot, J.R., Schuber, F., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 41–57.
[69]  Deniz, A.; Sade, A.; Severcan, F.; Keskin, D.; Tezcaner, A.; Banerjee, S. Celecoxib-loaded liposomes: Effect of cholesterol on encapsulation and in vitro release characteristics. Biosci. Rep. 2010, 30, 365–373, doi:10.1042/BSR20090104.
[70]  Kirby, C.; Clarke, J.; Gregoriadis, G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem. J. 1980, 186, 591–598.
[71]  Sugiyama, I.; Sadzuka, Y. Characterization of novel mixed polyethyleneglycol modified liposomes. Biol. Pharm. Bull. 2007, 30, 208–211, doi:10.1248/bpb.30.208.
[72]  Kuang, Y.; Liu, J.; Liu, Z.; Zhuo, R. Cholesterol-based anionic long-circulating cisplatin liposomes with reduced renal toxicity. Biomaterials 2012, 33, 1596–1606, doi:10.1016/j.biomaterials.2011.10.081.
[73]  Addeo, R.; Faiola, V.; Guarrasi, R.; Montella, L.; Vincenzi, B.; Capasso, E.; Cennamo, G.; Rotundo, M.; Tagliaferri, P.; Caraglia, M.; et al. Liposomal pegylated doxorubicin plus vinorelbine combination as first-line chemotherapy for metastatic breast cancer in elderly women ≥65 years of age. Cancer Chemother. Pharmacol. 2008, 62, 285–292, doi:10.1007/s00280-007-0605-6.
[74]  Beugin, S.; Edwards, K.; Karlsson, G.; Ollivon, M.; Lesieur, S. New sterically stabilized vesicles based on nonionic surfactant, cholesterol, and poly(ethylene glycol)-cholesterol conjugates. Biophys. J. 1998, 74, 3198–3210, doi:10.1016/S0006-3495(98)78026-9.
[75]  Li, C.; Cui, J.; Wang, C.; Zhang, L.; Xiu, X.; Li, Y.; Wei, N.; Li, Y.; Zhang, L. Encapsulation of vinorelbine into cholesterol-polyethylene glycol coated vesicles: Drug loading and pharmacokinetic studies. J. Pharm. Pharmacol. 2011, 63, 376–384, doi:10.1111/j.2042-7158.2010.01227.x.
[76]  Xu, H.; Deng, Y.; Chen, D.; Hong, W.; Lu, Y.; Dong, X. Esterase-catalyzed depegylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. J. Control. Release 2008, 130, 238–245, doi:10.1016/j.jconrel.2008.05.009.
[77]  Boomer, J.A.; Qualls, M.M.; Inerowicz, H.D.; Haynes, R.H.; Patri, V.S.; Kim, J.M.; Thompson, D.H. Cytoplasmic delivery of liposomal contents mediated by an acid-labile cholesterol-vinyl ether-PEG conjugate. Bioconjug. Chem. 2009, 20, 47–59, doi:10.1021/bc800239b.
[78]  Xu, H.; Wang, K.Q.; Deng, Y.H.; Chen, D.W. Effects of cleavable PEG-cholesterol derivatives on the accelerated blood clearance of pegylated liposomes. Biomaterials 2010, 31, 4757–4763, doi:10.1016/j.biomaterials.2010.02.049.
[79]  Yuda, T.; Maruyama, K.; Iwatsuru, M. Prolongation of liposome circulation time by various derivatives of polyethyleneglycols. Biol. Pharm. Bull. 1996, 19, 1347–1351, doi:10.1248/bpb.19.1347.
[80]  Carrion, C.; Domingo, J.C.; de Madariaga, M.A. Preparation of long-circulating immunoliposomes using PEG-cholesterol conjugates: Effect of the spacer arm between PEG and cholesterol on liposomal characteristics. Chem. Phys. Lipids 2001, 113, 97–110, doi:10.1016/S0009-3084(01)00178-5.
[81]  Siegers, C.; Biesalski, M.; Haag, R. Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chemistry 2004, 10, 2831–2838, doi:10.1002/chem.200306073.
[82]  Hofmann, A.M.; Wurm, F.; Frey, H. Rapid access to polyfunctional lipids with complex architecture via oxyanionic ring-opening polymerization. Macromolecules 2011, 44, 4648–4657, doi:10.1021/ma200367c.
[83]  Hofmann, A.M.; Wurm, F.; Huhn, E.; Nawroth, T.; Langguth, P.; Frey, H. Hyperbranched polyglycerol-based lipids via oxyanionic polymerization: Toward multifunctional stealth liposomes. Biomacromolecules 2010, 11, 568–574, doi:10.1021/bm901123j.
[84]  Kainthan, R.K.; Janzen, J.; Levin, E.; Devine, D.V.; Brooks, D.E. Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules 2006, 7, 703–709, doi:10.1021/bm0504882.
[85]  Kainthan, R.K.; Janzen, J.; Kizhakkedathu, J.N.; Devine, D.V.; Brooks, D.E. Hydrophobically derivatized hyperbranched polyglycerol as a human serum albumin substitute. Biomaterials 2008, 29, 1693–1704, doi:10.1016/j.biomaterials.2007.11.030.
[86]  Tirosh, O.; Barenholz, Y.; Katzhendler, J.; Priev, A. Hydration of polyethylene glycol-grafted liposomes. Biophys. J. 1998, 74, 1371–1379, doi:10.1016/S0006-3495(98)77849-X.
[87]  Unezaki, S.; Maruyama, K.; Takahashi, N.; Koyama, M.; Yuda, T.; Suginaka, A.; Iwatsuru, M. Enhanced delivery and antitumor activity of doxorubicin using long-circulating thermosensitive liposomes containing amphipathic polyethylene glycol in combination with local hyperthermia. Pharma. Res. 1994, 11, 1180–1185, doi:10.1023/A:1018949218380.
[88]  Lehtonen, J.Y.; Kinnunen, P.K. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes. Biophys. J. 1995, 68, 525–535, doi:10.1016/S0006-3495(95)80214-6.
[89]  Bedu-Addo, F.K.; Huang, L. Interaction of PEG-phospholipid conjugates with phospholipid: Implications in liposomal drug delivery. Adv. Drug Deliv. Rev. 1995, 16, 235–247, doi:10.1016/0169-409X(95)00027-5.
[90]  Lehtonen, J.Y.; Kinnunen, P.K. Changes in the lipid dynamics of liposomal membranes induced by poly(ethylene glycol): Free volume alterations revealed by inter- and intramolecular excimer-forming phospholipid analogs. Biophys. J. 1994, 66, 1981–1990, doi:10.1016/S0006-3495(94)80991-9.
[91]  Harris, J.M.; Martin, N.E.; Modi, M. Pegylation: A novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 2001, 40, 539–551, doi:10.2165/00003088-200140070-00005.
[92]  Stark, B.; Pabst, G.; Prassl, R. Long-term stability of sterically stabilized liposomes by freezing and freeze-drying: Effects of cryoprotectants on structure. Eur. J. Pharm. Sci. 2010, 41, 546–555, doi:10.1016/j.ejps.2010.08.010.
[93]  Szebeni, J. Complement activation-related pseudoallergy: A new class of drug-induced acute immune toxicity. Toxicology 2005, 216, 106–121, doi:10.1016/j.tox.2005.07.023.
[94]  Szebeni, J.; Baranyi, L.; Savay, S.; Milosevits, J.; Bunger, R.; Laverman, P.; Metselaar, J.M.; Storm, G.; Chanan-Khan, A.; Liebes, L.; et al. Role of complement activation in hypersensitivity reactions to doxil and hynic PEG liposomes: Experimental and clinical studies. J. Liposome Res. 2002, 12, 165–172, doi:10.1081/LPR-120004790.
[95]  Van den Hoven, J.M.; Nemes, R.; Metselaar, J.M.; Nuijen, B.; Beijnen, J.H.; Storm, G.; Szebeni, J. Complement activation by pegylated liposomes containing prednisolone. Eur. J. Pharm. Sci. 2013, 49, 265–271, doi:10.1016/j.ejps.2013.03.007.
[96]  Richter, A.W.; Akerblom, E. Polyethylene glycol reactive antibodies in man: Titer distribution in allergic patients treated with monomethoxy polyethylene glycol modified allergens or placebo, and in healthy blood donors. Int. Arch. Allergy Appl. Immunol. 1984, 74, 36–39, doi:10.1159/000233512.
[97]  Armstrong, J. The Occurrence, Induction, Specificity and Potential Effect of Antibodies against Poly(Ethylene Glycol). In Pegylated Protein Drugs: Basic Science and Clinical Applications; Veronese, F., Ed.; Birkhauser: Basel, Switzerland, 2009; pp. 147–168.
[98]  Yang, Q.; Ma, Y.; Zhao, Y.; She, Z.; Wang, L.; Li, J.; Wang, C.; Deng, Y. Accelerated drug release and clearance of pegylated epirubicin liposomes following repeated injections: A new challenge for sequential low-dose chemotherapy. Int. J. Nanomed. 2013, 8, 1257–1268.
[99]  Shiraishi, K.; Hamano, M.; Ma, H.; Kawano, K.; Maitani, Y.; Aoshi, T.; Ishii, K.J.; Yokoyama, M. Hydrophobic blocks of PEG-conjugates play a significant role in the accelerated blood clearance (ABC) phenomenon. J. Control. Release 2013, 165, 183–190, doi:10.1016/j.jconrel.2012.11.016.
[100]  Carpenter, C.P.; Woodside, M.D.; Kinkead, E.R.; King, J.M.; Sullivan, L.J. Response of dogs to repeated intravenous injection of polyethylene glycol 4000 with notes on excretion and sensitization. Toxicol. Appl. Pharmacol. 1971, 18, 35–40, doi:10.1016/0041-008X(71)90312-7.
[101]  Smyth, H.F.; Carpenter, C.P.; Weil, C.S. The toxicology of the polyethylene glycols. J. Am. Pharm. Assoc. 1950, 39, 349–354.
[102]  Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308, doi:10.1002/anie.200902672.
[103]  Herold, D.A.; Keil, K.; Bruns, D.E. Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem. Pharmacol. 1989, 38, 73–76, doi:10.1016/0006-2952(89)90151-2.
[104]  Veronese, F.M.; Pasut, G. Pegylation, successful approach to drug delivery. Drug Discov. Today 2005, 10, 1451–1458, doi:10.1016/S1359-6446(05)03575-0.
[105]  Pasut, G.; Veronese, F.M. Polymer–drug conjugation, recent achievements and general strategies. Prog. Polym. Sci. 2007, 32, 933–961, doi:10.1016/j.progpolymsci.2007.05.008.
[106]  Haaf, F.; Sanner, A.; Straub, F. Polymers of n-vinylpyrrolidone: Synthesis, characterization and uses. Polym. J. 1985, 17, 143–152, doi:10.1295/polymj.17.143.
[107]  Jafari, M.; Danti, A.; Ahmed, I. Comparison of polyethylene glycol, polyvinylpyrrolidone and urea as excipients for solid dispersion systems of miconazole nitrate. Int. J. Pharm. 1988, 48, 207–215, doi:10.1016/0378-5173(88)90265-7.
[108]  Liu, X.; Xu, Y.; Wu, Z.; Chen, H. Poly(n-vinylpyrrolidone)-modified surfaces for biomedical applications. Macromol. Biosci. 2013, 13, 147–154, doi:10.1002/mabi.201200269.
[109]  Aarthi, T.; Shaama, M.S.; Madras, G. Degradation of water soluble polymers under combined ultrasonic and ultraviolet radiation. Ind. Eng. Chem. Res. 2007, 46, 6204–6210, doi:10.1021/ie070287+.
[110]  Andersen, T.E.; Palarasah, Y.; Skjodt, M.O.; Ogaki, R.; Benter, M.; Alei, M.; Kolmos, H.J.; Koch, C.; Kingshott, P. Decreased material-activation of the complement system using low-energy plasma polymerized poly(vinyl pyrrolidone) coatings. Biomaterials 2011, 32, 4481–4488, doi:10.1016/j.biomaterials.2011.03.002.
[111]  Torchilin, V.P.; Shtilman, M.I.; Trubetskoy, V.S.; Whiteman, K.; Milstein, A.M. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochim. Biophys. Acta 1994, 1195, 181–184, doi:10.1016/0005-2736(94)90025-6.
[112]  Takeuchi, H.; Kojima, H.; Yamamoto, H.; Kawashima, Y. Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats. J. Control. Release 2001, 75, 83–91, doi:10.1016/S0168-3659(01)00368-6.
[113]  Dunn, P.; Kuo, T.T.; Shih, L.Y.; Wang, P.N.; Sun, C.F.; Chang, M.J.W. Bone marrow failure and myelofibrosis in a case of PVP storage disease. Am. J. Hematol. 1998, 57, 68–71, doi:10.1002/(SICI)1096-8652(199801)57:1<68::AID-AJH12>3.0.CO;2-5.
[114]  Hyo-Jick, C.; Evan, B.; Carlo, D.M. Synthesis and characterization of nanoscale biomimetic polymer vesicles and polymer membranes for bioelectronic applications. Nanotechnology 2005, 16, doi:10.1088/0957-4484/16/5/002.
[115]  Adams, N.; Schubert, U.S. Poly(2-oxazolines) in biological and biomedical application contexts. Adv. Drug Deliv. Rev. 2007, 59, 1504–1520, doi:10.1016/j.addr.2007.08.018.
[116]  Ludtke, K.; Jordan, R.; Hommes, P.; Nuyken, O.; Naumann, C.A. Lipopolymers from new 2-substituted-2-oxazolines for artificial cell membrane constructs. Macromol. Biosci. 2005, 5, 384–393, doi:10.1002/mabi.200500004.
[117]  Isaacman, M.J.; Theogarajan, L. Poly(Oxazoline) Block Copolymers for Biomedical Applications. In Tailored Polymer Architectures for Pharmaceutical and Biomedical Applications; Scholz, C., Kressler, J., Eds.; American Chemical Society: Washinton, DC, USA, 2013; Volume 1135, pp. 53–68.
[118]  Cai, G.; Litt, M.H. Preparation and characterization of phenyl and undecyl oxazoline block copolymers. J. Polym. Sci. 1989, 27, 3603–3618.
[119]  Jin, R.H. Water soluble star block poly(oxazoline) with porphyrin label: A unique emulsion and its shape direction. J. Mater. Chem. 2004, 14, 320–327, doi:10.1039/b307439k.
[120]  Weberskirch, R.; Hettich, R.; Nuyken, O.; Schmaljohann, D.; Voit, B. Synthesis of new amphiphilic star polymers derived from a hyperbranched macroinitiator by the cationic ‘grafting from’ method. Macromol. Chem. Phys. 1999, 200, 863–873, doi:10.1002/(SICI)1521-3935(19990401)200:4<863::AID-MACP863>3.0.CO;2-N.
[121]  Woodle, M.C.; Engbers, C.M.; Zalipsky, S. New amphipatic polymer-lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjug. Chem. 1994, 5, 493–496, doi:10.1021/bc00030a001.
[122]  Zalipsky, S.; Hansen, C.B.; Oaks, J.M.; Allen, T.M. Evaluation of blood clearance rates and biodistribution of poly(2-oxazoline)-grafted liposomes. J. Pharm. Sci. 1996, 85, 133–137, doi:10.1021/js9504043.
[123]  Xia, G.; An, Z.; Wang, Y.; Zhao, C.; Li, M.; Li, Z.; Ma, J. Synthesis of a novel polymeric material folate-poly(2-ethyl-2-oxazoline)-distearoyl phosphatidyl ethanolamine tri-block polymer for dual receptor and pH-sensitive targeting liposome. Chem. Pharm. Bull. 2013, 61, 390–398, doi:10.1248/cpb.c12-00951.
[124]  Kronek, J.; Kronekova, Z.; Luston, J.; Paulovicova, E.; Paulovicova, L.; Mendrek, B. In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines). J. Mater. Sci. Mater. Med. 2011, 22, 1725–1734.
[125]  Bendele, A.; Seely, J.; Richey, C.; Sennello, G.; Shopp, G. Short communication: Renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins. Toxicol. Sci. 1998, 42, 152–157, doi:10.1093/toxsci/42.2.152.
[126]  Miyasaki, K. Experimental polymer storage disease in rabbits. Virchows Arch. A 1975, 365, 351–365.
[127]  Yang, D.; Van, S.; Liu, J.; Wang, J.; Jiang, X.; Wang, Y.; Yu, L. Physicochemical properties and biocompatibility of a polymer-paclitaxel conjugate for cancer treatment. Int. J. Nanomed. 2011, 6, 2557–2566.
[128]  Bhatt, R.; de Vries, P.; Tulinsky, J.; Bellamy, G.; Baker, B.; Singer, J.W.; Klein, P. Synthesis and in vivo antitumor activity of poly(l-glutamic acid) conjugates of 20S-camptothecin. J. Med. Chem. 2003, 46, 190–193, doi:10.1021/jm020022r.
[129]  Romberg, B.; Metselaar, J.M.; Baranyi, L.; Snel, C.J.; Bunger, R.; Hennink, W.E.; Szebeni, J.; Storm, G. Poly(amino acid)s: Promising enzymatically degradable stealth coatings for liposomes. Int. J. Pharm. 2007, 331, 186–189, doi:10.1016/j.ijpharm.2006.11.018.
[130]  Metselaar, J.M.; Bruin, P.; de Boer, L.W.; de Vringer, T.; Snel, C.; Oussoren, C.; Wauben, M.H.; Crommelin, D.J.; Storm, G.; Hennink, W.E. A novel family of l-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug. Chem. 2003, 14, 1156–1164, doi:10.1021/bc0340363.
[131]  De Winne, K.; Roseeuw, E.; Pagnaer, J.; Schacht, E. Succinoylated poly[n-(2-hydroxyethyl)-l-glutamine] derivatives for drug delivery. J. Bioact. Compat. Polym. 2004, 19, 439–452, doi:10.1177/0883911504048327.
[132]  Yang, S.R.; Lee, H.J.; Kim, J.D. Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin. J. Control. Release 2006, 114, 60–68.
[133]  Romberg, B.; Metselaar, J.M.; deVringer, T.; Motonaga, K.; Kettenes-van den Bosch, J.J.; Oussoren, C.; Storm, G.; Hennink, W.E. Enzymatic degradation of liposome-grafted poly(hydroxyethyl l-glutamine). Bioconjug. Chem. 2005, 16, 767–774, doi:10.1021/bc0497719.
[134]  Romberg, B.; Oussoren, C.; Snel, C.J.; Carstens, M.G.; Hennink, W.E.; Storm, G. Pharmacokinetics of poly(hydroxyethyl-l-asparagine)-coated liposomes is superior over that of PEG-coated liposomes at low lipid dose and upon repeated administration. Biochim. Biophys. Acta 2007, 1768, 737–743.
[135]  Romberg, B.; Flesch, F.M.; Hennink, W.E.; Storm, G. Enzyme-induced shedding of a poly(amino acid)-coating triggers contents release from dioleoyl phosphatidylethanolamine liposomes. Int. J. Pharm. 2008, 355, 108–113, doi:10.1016/j.ijpharm.2007.11.055.
[136]  Zheng, J.; Li, L.; Chen, S.; Jiang, S. Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir 2004, 20, 8931–8938, doi:10.1021/la036345n.
[137]  Chen, S.; Zheng, J.; Li, L.; Jiang, S. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc. 2005, 127, 14473–14478, doi:10.1021/ja054169u.
[138]  He, Y.; Hower, J.; Chen, S.; Bernards, M.T.; Chang, Y.; Jiang, S. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir 2008, 24, 10358–10364, doi:10.1021/la8013046.
[139]  Wu, J.; Lin, W.; Wang, Z.; Chen, S.; Chang, Y. Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir 2012, 28, 7436–7441, doi:10.1021/la300394c.
[140]  Ishihara, K.; Ziats, N.P.; Tierney, B.P.; Nakabayashi, N.; Anderson, J.M. Protein adsorption from human plasma is reduced on phospholipid polymers. J. Biomed. Mater. Res. 1991, 25, 1397–1407, doi:10.1002/jbm.820251107.
[141]  Lewis, A.L. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf. BBiointerfaces 2000, 18, 261–275, doi:10.1016/S0927-7765(99)00152-6.
[142]  Jiang, S.; Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological application. Adv. Mater. 2010, 22, 920–932, doi:10.1002/adma.200901407.
[143]  Cao, Z.; Zhang, L.; Jiang, S. Superhydrophilic zwitterionic polymers stabilize liposomes. Langmuir 2012, 28, 11625–11632, doi:10.1021/la302433a.
[144]  Awasthi, V.; Nag, O.K.; Yadav, V.R.; Hedrick, A. Superhydrophilic polymer modification for prolonging circulation persistence of liposomes. Available online: http://abstracts.aaps.org/Verify/aaps2013/postersubmissions/T3062.pdf (accessed on 22 October 2013).
[145]  Phillips, W.; Klipper, R.; Awasthi, V.; Rudolph, A.; Cliff, R.; Kwasiborski, V.; Goins, B. Polyethylene glycol-modified liposome-encapsulated hemoglobin: A long circulating red cell substitute. J. Pharmacol. Exp. Ther. 1999, 288, 665–670.
[146]  Nakamura, K.; Yamashita, K.; Itoh, Y.; Yoshino, K.; Nozawa, S.; Kasukawa, H. Comparative studies of polyethylene glycol-modified liposomes prepared using different PEG-modification methods. Biochim. Biophys. Acta 2012, 1818, 2801–2807, doi:10.1016/j.bbamem.2012.06.019.
[147]  Awasthi, V.D.; Garcia, D.; Klipper, R.; Goins, B.A.; Phillips, W.T. Neutral and anionic liposome-encapsulated hemoglobin: Effect of post-inserted poly (ethylene glycol)-distearoylphosphatidylethanolamine on distribution and circulation kinetics. J. Pharmacol. Exp. Ther. 2004, 309, 241–248, doi:10.1124/jpet.103.060228.
[148]  Szleifer, I.; Gerasimov, O.V.; Thompson, D.H. Spontaneous liposome formation induced by grafted poly(ethylene oxide) layers: Theoretical prediction and experimental verification. Proc. Natl. Acad. Sci. USA 1998, 95, 1032–1037, doi:10.1073/pnas.95.3.1032.
[149]  Uster, P.S.; Allen, T.M.; Daniel, B.E.; Mendez, C.J.; Newman, M.S.; Zhu, G.Z. Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett. 1996, 386, 243–246, doi:10.1016/0014-5793(96)00452-8.
[150]  Sou, K.; Endo, T.; Takeoka, S.; Tsuchida, E. Poly(ethylene glycol)-modification of the phospholipid vesicles by using the spontaneous incorporation of poly(ethylene glycol)-lipid into the vesicles. Bioconjug. Chem. 2000, 11, 372–379, doi:10.1021/bc990135y.
[151]  Puri, A.; Loomis, K.; Smith, B.; Lee, J.H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carr. Syst. 2009, 26, 523–580, doi:10.1615/CritRevTherDrugCarrierSyst.v26.i6.10.
[152]  Kumar, A.; Erasquin, U.J.; Qin, G.; Li, K.; Cai, C. “Clickable”, polymerized liposomes as a versatile and stable platform for rapid optimization of their peripheral compositions. Chem. Commun. 2010, 46, 5746–5748, doi:10.1039/c0cc00784f.
[153]  Cavalli, S.; Tipton, A.R.; Overhand, M.; Kros, A. The chemical modification of liposome surfaces via a copper-mediated [3 + 2] azide-alkyne cycloaddition monitored by a colorimetric assay. Chem. Commun. 2006, 14, 3193–3195.
[154]  Li, L.; Zahner, D.; Su, Y.; Gruen, C.; Davidson, G.; Levkin, P.A. A biomimetic lipid library for gene delivery through thiol-yne click chemistry. Biomaterials 2012, 33, 8160–8166, doi:10.1016/j.biomaterials.2012.07.044.
[155]  Feldborg, L.N.; Jolck, R.I.; Andresen, T.L. Quantitative evaluation of bioorthogonal chemistries for surface functionalization of nanoparticles. Bioconjug. Chem. 2012, 23, 2444–2450, doi:10.1021/bc3005057.
[156]  Fendler, J.H. Polymerized surfactant vesicles: Novel membrane mimetic systems. Science 1984, 223, 888–894.
[157]  Muthu, M.S.; Feng, S.S. Theranostic liposomes for cancer diagnosis and treatment: Current development and pre-clinical success. Expert Opin. Drug Deliv. 2013, 10, 151–155, doi:10.1517/17425247.2013.729576.
[158]  Arulsudar, N.; Subramanian, N.; Mishra, P.; Sharma, R.K.; Murthy, R.S. Preparation, characterisation and biodistribution of 99mtc-labeled liposome encapsulated cyclosporine. J. Drug Target. 2003, 11, 187–196.
[159]  Gabizon, A.A. Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes. Cancer Res. 1992, 52, 891–896.
[160]  Huang, S.K.; Stauffer, P.R.; Hong, K.; Guo, J.W.; Phillips, T.L.; Huang, A.; Papahadjopoulos, D. Liposomes and hyperthermia in mice: Increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res. 1994, 54, 2186–2191.
[161]  Sharma, A.; Sharma, U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997, 154, 123–140, doi:10.1016/S0378-5173(97)00135-X.
[162]  Laverman, P.; Boerman, O.C.; Storm, G.; Oyen, W.J. (99m)Tc-labelled stealth liposomal doxorubicin (Caelyx) in glioblastomas and metastatic brain tumours. Br. J. Cancer 2002, 86, 659–661, doi:10.1038/sj.bjc.6600093.
[163]  Laverman, P.; Carstens, M.G.; Boerman, O.C.; Dams, E.T.; Oyen, W.J.; van Rooijen, N.; Corstens, F.H.; Storm, G. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J. Pharmacol. Exp. Ther. 2001, 298, 607–612.
[164]  Bao, A.; Goins, B.; Klipper, R.; Negrete, G.; Phillips, W.T. Direct 99mtc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. J. Pharmacol. Exp. Ther. 2004, 308, 419–425.
[165]  Gabizon, A.; Goren, D.; Horowitz, A.T.; Tzemach, D.; Lossos, A.; Siegal, T. Long-circulating liposomes for drug delivery in cancer therapy: A review of biodistribution studies in tumor-bearing animals. Adv. Drug Deliv. Rev. 1997, 24, 337–344, doi:10.1016/S0169-409X(96)00476-0.
[166]  Lotem, M.; Hubert, A.; Lyass, O.; Goldenhersh, M.A.; Ingber, A.; Peretz, T.; Gabizon, A. Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. Arch. Dermatol. 2000, 136, 1475–1480, doi:10.1001/archderm.136.12.1475.
[167]  Hong, R.L.; Huang, C.J.; Tseng, Y.L.; Pang, V.F.; Chen, S.T.; Liu, J.J.; Chang, F.H. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: Is surface coating with polyethylene glycol beneficial? Clin. Cancer Res. 1999, 5, 3645–3652.
[168]  Cui, J.; Li, C.; Guo, W.; Li, Y.; Wang, C.; Zhang, L.; Zhang, L.; Hao, Y.; Wang, Y. Direct comparison of two pegylated liposomal doxorubicin formulations: Is auc predictive for toxicity and efficacy? J. Control. Release 2007, 118, 204–215, doi:10.1016/j.jconrel.2006.12.002.
[169]  Parr, M.J.; Masin, D.; Cullis, P.R.; Bally, M.B. Accumulation of liposomal lipid and encapsulated doxorubicin in murine lewis lung carcinoma: The lack of beneficial effects by coating liposomes with poly(ethylene glycol). J. Pharmacol. Exp. Ther. 1997, 280, 1319–1327.
[170]  Allen, T.M.; Mumbengegwi, D.R.; Charrois, G.J. Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin. Cancer Res. 2005, 11, 3567–3573, doi:10.1158/1078-0432.CCR-04-2517.
[171]  Manjappa, A.S.; Chaudhari, K.R.; Venkataraju, M.P.; Dantuluri, P.; Nanda, B.; Sidda, C.; Sawant, K.K.; Murthy, R.S. Antibody derivatization and conjugation strategies: Application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J. Control. Release 2011, 150, 2–22, doi:10.1016/j.jconrel.2010.11.002.
[172]  Sofou, S.; Sgouros, G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin. Drug Deliv. 2008, 5, 189–204, doi:10.1517/17425247.5.2.189.
[173]  Forssen, E.; Willis, M. Ligand-targeted liposomes. Adv. Drug Deliv. Rev. 1998, 29, 249–271, doi:10.1016/S0169-409X(97)00083-5.
[174]  Li, C.; Wang, Y.; Zhang, X.; Deng, L.; Zhang, Y.; Chen, Z. Tumor-targeted liposomal drug delivery mediated by a diseleno bond-stabilized cyclic peptide. Int. J. Nanomed. 2013, 8, 1051–1062, doi:10.2217/nnm.13.105.
[175]  Rezler, E.M.; Khan, D.R.; Tu, R.; Tirrell, M.; Fields, G.B. Peptide-mediated targeting of liposomes to tumor cells. Methods Mol. Biol. 2007, 386, 269–298.
[176]  Vaidya, B.; Agrawal, G.P.; Vyas, S.P. Platelets directed liposomes for the delivery of streptokinase: Development and characterization. Eur. J. Pharm. Sci. 2011, 44, 589–594, doi:10.1016/j.ejps.2011.10.004.
[177]  Rangger, C.; Helbok, A.; von Guggenberg, E.; Sosabowski, J.; Radolf, T.; Prassl, R.; Andreae, F.; Thurner, G.C.; Haubner, R.; Decristoforo, C. Influence of pegylation and rgd loading on the targeting properties of radiolabeled liposomal nanoparticles. Int. J. Nanomed. 2012, 7, 5889–5900.
[178]  Torchilin, V.P.; Klibanov, A.L.; Huang, L.; O’Donnell, S.; Nossiff, N.D.; Khaw, B.A. Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J. 1992, 6, 2716–2719.
[179]  Li, S.D.; Huang, L. Stealth nanoparticles: High density but sheddable PEG is a key for tumor targeting. J. Control. Release 2010, 145, 178–181, doi:10.1016/j.jconrel.2010.03.016.
[180]  Hong, M.; Zhu, S.; Jiang, Y.; Tang, G.; Sun, C.; Fang, C.; Shi, B.; Pei, Y. Novel anti-tumor strategy: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles. J. Control. Release 2010, 141, 22–29, doi:10.1016/j.jconrel.2009.08.024.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133