全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Plants  2013 

Verbesina alternifolia Tolerance to the Holoparasite Cuscuta gronovii and the Impact of Drought

DOI: 10.3390/plants2040635

Keywords: Cuscuta gronovii, focal resource, parasitism, pulse stressed, resource limitation, Verbesina alternifolia

Full-Text   Cite this paper   Add to My Lib

Abstract:

Holoparasites are nonphotosynthetic plants that acquire all resources from hosts. The holoparasite Cuscuta gronovii is native to much of the US with a broad host range including Verbesina alternifolia, an understory perennial. Both species grow in moderate to moist soils and occur in habitats that may experience prolonged or episodic drought. We applied the Wise-Abrahamson Limiting Resource Model (LRM) developed for plant-herbivore relations to examine the effects of pattern of drought stress on tolerance of V. alternifolia to parasitism by C. gronovii. Individual plants were assigned one of six treatments that were combinations of parasite (none or addition of parasite) and drought stress (well-watered, continuously-stressed, or pulse-stressed). After pulse-stressed plants had experienced two wet-dry cycles all plants were harvested. Parasitism strongly reduced both shoot and root mass and well-watered hosts exhibited the greatest decline, indicating reduced tolerance to parasitism when water was readily available. This is consistent with the LRM if parasitism limits photosynthates available to the host. However, parasitism increased allocation to shoot and this effect did not differ between well-watered and drought-stressed plants, indicating equal tolerance. This outcome is in accord with an alternative prediction of the LRM if hosts are not carbon limited. Total pot productivity was reduced by parasitism and drought stress, and this effect was greater for pulse-stressed than for continuously-stressed hosts. We discuss the applicability of the LRM for understanding the effects of drought on tolerance to parasitism.

References

[1]  Watling, J.R.; Press, M.C. Impacts of infection by parasitic angiosperms on host photosynthesis. Plant Biol. 2001, 3, 244–250, doi:10.1055/s-2001-15195.
[2]  Bollard, E.G. Transport in the xylem. Annu. Rev. Plant Physiol. 1960, 11, 141–166, doi:10.1146/annurev.pp.11.060160.001041.
[3]  Mooney, H.A. The carbon balance of plants. Annu. Rev. Ecol. Syst. 1972, 3, 315–346.
[4]  Thompson, M.V. Phloem: The long and the short of it. Trends Plant Sci. 2006, 11, 26–32, doi:10.1016/j.tplants.2005.11.009.
[5]  Wardlaw, I.F. The control and pattern of movement of carbohydrates in plants. Bot. Rev. 1968, 34, 79–105, doi:10.1007/BF02858622.
[6]  Hsiao, T.C. Plant responses to water stress. Annu. Rev. Plant Physiol. 1973, 24, 519–570, doi:10.1146/annurev.pp.24.060173.002511.
[7]  Gutbrodt, B.; Mody, K.; Dorn, S. Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos 2011, 120, 1732–1740, doi:10.1111/j.1600-0706.2011.19558.x.
[8]  Hawkes, C.V.; Sullivan, J.J. The impact of herbivory on plants in different resource conditions: A metaanalysis. Ecology 2001, 82, 2045–2058, doi:10.1890/0012-9658(2001)082[2045:TIOHOP]2.0.CO;2.
[9]  Joern, A.; Mole, S. The plant stress hypothesis and variable responses by blue grama grass (Bouteloua gracilis) to water, mineral nitrogen, and insect herbivory. J. Chem. Ecol. 2005, 31, 2069–2090, doi:10.1007/s10886-005-6078-3.
[10]  Robinson, E.A.; Ryan, G.D.; Newman, J.A. A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 2012, 194, 321–336, doi:10.1111/j.1469-8137.2012.04074.x.
[11]  Sadras, V.O.; Wilson, L.J.; Lally, D.A. Water deficit enhanced cotton resistance to spider mite herbivory. Ann. Bot. 1998, 81, 273–286, doi:10.1006/anbo.1997.0551.
[12]  Sun, Y.; Ding, J.; Frye, M.J. Effects of resource availability on tolerance of herbivory in the invasive Alternanthera philoxeroides and the native Alternanthera sessilis. Weed Res. 2009, 50, 527–536.
[13]  Marquardt, E.S.; Pennings, S.C. Constraints on host use by a parasitic plant. Oecologia 2010, 164, 177–184, doi:10.1007/s00442-010-1664-7.
[14]  Pennings, S.C.; Callaway, R.M. Parasitic plants: Parallels and contrasts with herbivores. Oecologia 2002, 131, 479–489, doi:10.1007/s00442-002-0923-7.
[15]  Nú?ez-Farfán, J.; Fornoni, J.; Valverde, P.L. The evolution of resistance and tolerance to herbivores. Annu. Rev. Evol. Syst. 2007, 38, 541–566, doi:10.1146/annurev.ecolsys.38.091206.095822.
[16]  Rosenthal, J.P.; Kotanen, P.M. Terrestrial plant tolerance to herbivory. Trends Ecol. Evol. 1994, 9, 145–148, doi:10.1016/0169-5347(94)90180-5.
[17]  Strauss, S.Y.; Agrawal, A.A. The ecology and evolution of plant tolerance to herbivory. Trends Ecol. Evol. 1999, 14, 179–185, doi:10.1016/S0169-5347(98)01576-6.
[18]  Belsky, A.J. Does herbivory benefit plants? A review of the evidence. Am. Nat. 1986, 127, 870–892.
[19]  Ferraro, D.O.; Oesterheld, M. Effect of defoliation on grass growth. A quantitative review. Oikos 2002, 98, 125–133, doi:10.1034/j.1600-0706.2002.980113.x.
[20]  Meyer, G.A.; Root, R.B. Effects of herbivorous insects and soil fertility on reproduction of goldenrod. Ecology 1993, 74, 1117–1128, doi:10.2307/1940481.
[21]  Rand, T.A. Competition, facilitation, and compensation for insect herbivory in an annual salt marsh forb. Ecology 2004, 85, 2046–2052, doi:10.1890/03-3087.
[22]  Wise, M.J.; Abrahamson, W.G. Beyond the compensatory continuum: Environmental resource levels and plant tolerance of herbivory. Oikos 2005, 109, 417–428, doi:10.1111/j.0030-1299.2005.13878.x.
[23]  Hibberd, J.M.; Quick, W.P.; Press, M.C.; Scholes, J.D.; Jeschke, W.D. Solute fluxes from tobacco to the parasitic angiosperm Orobanche cernua and the influence of infection on host carbon and nitrogen relations. Plant Cell Environ. 1999, 22, 937–947, doi:10.1046/j.1365-3040.1999.00462.x.
[24]  Jeschke, W.D.; Baig, A.; Hilpert, A. Sink-stimulated photosynthesis, increased transpiration and increased demand dependent stimulation of nitrate uptake: Nitrogen and carbon relations in the parasitic association Cuscuta reflexa–Coleus blumei. J. Exp. Bot. 1997, 48, 915–925, doi:10.1093/jxb/48.4.915.
[25]  Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684, doi:10.1016/j.foreco.2009.09.001.
[26]  Novoplansky, A.; Goldberg, D.E. Effects of water pulsing on individual performance and competitive hierarchies in plants. J. Veg. Sci. 2001, 12, 199–208, doi:10.2307/3236604.
[27]  Huberty, A.F.; Denno, R.F. Plant water stress and its consequences for herbivorous insects: A new synthesis. Ecology 2004, 85, 1383–1398, doi:10.1890/03-0352.
[28]  Mody, K.; Eichenberger, D.; Dorn, S. Stress magnitude matters: Different intensities of pulsed water stress produce non-monotonic resistance responses of host plants to insect herbivores. Ecol. Entomol. 2009, 34, 133–143, doi:10.1111/j.1365-2311.2008.01053.x.
[29]  Xu, Z.; Zhou, G.; Shimizu, H. Plant responses to drought and rewatering. Plant Signal. Behav. 2010, 5, 649–654, doi:10.4161/psb.5.6.11398.
[30]  Wise, M.J.; Abrahamson, W.G. Effects of resource availability on tolerance of herbivory: A review and assessment of three opposing models. Am. Nat. 2007, 169, 443–454, doi:10.1086/512044.
[31]  Kerkhoff, A.J.; Enquist, B.J. Multiplicative by nature: Why logarithmic transformation is necessary in allometry. J. Theor. Biol. 2009, 257, 519–521, doi:10.1016/j.jtbi.2008.12.026.
[32]  Mascaro, J.; Litton, C.M.; Hughes, R.F.; Uowolo, A.; Schnitzer, S.A. Minimizing bias in biomass allometry: Model selection and log-transformation of data. Biotropica 2011, 43, 649–653, doi:10.1111/j.1744-7429.2011.00798.x.
[33]  McConnaughay, K.D.M.; Coleman, J.S. Biomass allocation in plants: Ontogeny or optimality? A test along three resource gradients. Ecology 1999, 80, 2581–2593, doi:10.1890/0012-9658(1999)080[2581:BAIPOO]2.0.CO;2.
[34]  Shen, H.; Hong, L.; Ye, W.; Cao, H.; Wang, Z. The influence of the Holoparasitic plant Cuscuta campestris on the growth and photosynthesis of its host Mikania micrantha. J. Exp. Bot. 2007, 58, 2929–2937, doi:10.1093/jxb/erm168.
[35]  Jeschke, W.D.; Rath, N.; Baumel, P.; Czygan, F.C.; Proksch, P. Modeling the flow and partitioning of carbon and nitrogen in the holoparasite Cuscuta reflexa Roxb and its host Lupinus albus L. 1. Methods for estimating net flows. J. Exp. Bot. 1994, 45, 791–800, doi:10.1093/jxb/45.6.791.
[36]  Evans, B.A. Pattern of Drought and Host Plant-Holoparasite Relations: An Examination of Resistance and Tolerance. Master’s Thesis, Illinois State University, Normal, IL, USA, 2012.
[37]  Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264, doi:10.1071/FP02076.
[38]  Ghannoum, O. C4 photosynthesis and water stress. Ann. Bot. 2009, 103, 635–644, doi:10.1093/aob/mcn093.
[39]  Heschel, M.S.; Riginos, C. Mechanisms of selection for drought stress tolerance and avoidance in Impatiens capensis. Am. J. Bot. 2005, 92, 37–44, doi:10.3732/ajb.92.1.37.
[40]  Sletvold, N.; Agren, J. Variation in tolerance to drought among Sandinavian populations of Arabidopsis lyrata. Evol. Ecol. 2012, 26, 559–557, doi:10.1007/s10682-011-9502-x.
[41]  Gleason, H.A.; Cronquist, A. Manual of Vascular Plants of Northeastern United States and Adjacent Canada, 2nd ed. ed.; New York Botanical Garden: New York, NY, USA, 1991.
[42]  Costea, M.; Tardif, F.J. The biology of Canadian weeds. 133. Cuscuta campestris Yuncker, C. gronovii Willd. Ex Schult., C. umbrosa Beyr. Ex Hook., C. epithymum (L.) L. and C. epilinum Weihe. Can. J. Plant Sci. 2006, 86, 293–316, doi:10.4141/P04-077.
[43]  Sandler, H.A. Dodder—Cuscuta gronovii Willd; Cranberry Experiment Station, University of Massachusetts: Wareham, MA, USA, 2001.
[44]  Parker, C.; Riches, C.R. Parasitic Weeds of the World. Biology and Control; CAB International: Wallingford, UK, 1993.
[45]  Gaertner, E.E. Studies of seed germination, seed identification, and host relationships in dodders, Cuscuta spp. Cornell Exp. Stn. Mem. 1950, 294, 1–56.
[46]  Devlin, R.M.; Deubert, K.H. Control of swamp dodder (Cuscuta gronovii) on cranberry bogs with butralin. Proc. Annu. Meet. Northeast. Weed Sci. Soc. 1980, 11, 112–113.
[47]  Kelly, C.K. Resource choice in Cuscuta europaea. Proc. Natl. Acad. Sci. USA 1992, 89, 12194–12197, doi:10.1073/pnas.89.24.12194.
[48]  Birschwilks, M.; Haupt, S.; Hofius, D.; Neumann, S. Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J. Exp. Bot. 2006, 57, 911–921, doi:10.1093/jxb/erj076.
[49]  Vaughn, K.C. Conversion of the searching hyphae of dodder into xylic and phloic hyphae: A cytochemical and immunocytochemical investigation. Int. J. Plant Sci. 2006, 167, 1099–1114, doi:10.1086/507872.
[50]  Hibberd, J.M.; Jeschke, D. Solute flux into parasitic plants. J. Exp. Bot. 2001, 52, 2043–2049, doi:10.1093/jexbot/52.363.2043.
[51]  Niinemets, ü.; Portsmuth, A.; Tena, D.; Tobias, M.; Matesanz, S.; Valladares, F. Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Ann. Bot. 2007, 100, 283–303, doi:10.1093/aob/mcm107.
[52]  Dawson, J.H.; Musselman, L.J.; Wolswinkel, P.; D?rr, L. Biology and control of Cuscuta. Rev. Weed Sci. 1994, 6, 265–317.
[53]  Lanini, T.; Kogan, M. Biology and management of Cuscuta in crops. Cien. Inv. Agr. 2005, 32, 165–179.
[54]  Grewell, B. Parasite facilitates plant species coexistence in a coastal wetland. Ecology 2008, 89, 1481–1488, doi:10.1890/07-0896.1.
[55]  Press, M.C.; Phoenix, G.K. Impacts of parasitic plants on natural communities. New Phytol. 2005, 166, 737–751, doi:10.1111/j.1469-8137.2005.01358.x.
[56]  Yu, H.; Yu, F.-H.; Miao, S.-L.; Dong, M. Holoparasitic Cuscuta campestris suppresses invasive Mikania micrantha and contributes to native community recovery. Biol. Conserv. 2008, 141, 2653–2661, doi:10.1016/j.biocon.2008.08.002.
[57]  Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; van der Linden, P.J.; Hanson, C.E. IPCC Fourth Assesment Report (AR4). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007.
[58]  Milnes, K.J.; Davies, W.J.; Rodwell, J.S.; Francis, B.J. The responses of Briza media and Koeleria macrantha to drought and re-watering. Funct. Ecol. 1998, 12, 665–672, doi:10.1046/j.1365-2435.1998.00237.x.
[59]  Rennenberg, H.; Dannenmann, M.; Gessler, A.; Kreuzwieser, J.; Simon, J.; Papen, H. Nitrogen balance in forest soils: Nutritional limitation of plants under climate change stresses. Plant Biol. 2009, 11, 4–23, doi:10.1111/j.1438-8677.2009.00241.x.
[60]  Phoenix, G.K.; Press, M.C. Effects of climate change on parasitic plants: The root hemiparasitic Orobanchaceae. Folia Geobot. 2005, 40, 205–216, doi:10.1007/BF02803235.
[61]  Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669, doi:10.1146/annurev.ecolsys.37.091305.110100.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133