Among several naturally occurring environmental factors, temperature is considered to play a predominant role in controlling proper growth and flowering in geophytes. Most of them require a “warm-cold-warm” sequence to complete their annual cycle. The temperature optima for flower meristem induction and the early stages of floral organogenesis vary between nine and 25 °C, followed, in the autumn, by a several-week period of lower temperature (4–9 °C), which enables stem elongation and anthesis. The absence of low temperature treatment leads to slow shoot growth in spring and severe flowering disorders. Numerous studies have shown that the effects of the temperature surrounding the underground organs during the autumn-winter period can lead to important physiological changes in plants, but the mechanism that underlies the relationship between cold treatment and growth is still unclear. In this mini-review, we describe experimental data concerning the temperature requirements for flower initiation and development, shoot elongation, aboveground growth and anthesis in bulbous plants. The physiological processes that occur during autumn-winter periods in bulbs (water status, hormonal balance, respiration, carbohydrate mobilization) and how these changes might provoke disorders in stem elongation and flowering are examined. A model describing the relationship between the cold requirement, auxin and gibberellin interactions and the growth response is proposed.
References
[1]
De Hertogh, A.A.; le Nard, M. The Physiology of Flower Bulbs: A Comprehensive Treatise on the Physiology and Utilization of Ornamental Flowering Bulbous and Tuberous Plants; Elsevier Science Publishers: Amsterdam, The Netherland, 1993; p. 812.
[2]
Lapointe, L. How phenology influences physiology in deciduous spring ephemerals. Physiol. Plant. 2001, 113, 151–157, doi:10.1034/j.1399-3054.2001.1130201.x.
[3]
Ryberg, M. A morphological study of Corydalis nobilis, Corydalis cava, Corydalis solida and some allied species, with special reference to their underground organs. Acta Horti Bergiani 1959, 19, 15–119.
[4]
Gorin, N.; Heidema, F.T. Starch contents of freeze-dried anthers and α-amylase activity of their extracts as criteria that dry-stored bulbs (Tulipa gesneriana L.) cultivar “apelddorn” have been exposed to 5 °C. Sci. Hort. 1985, 26, 183–189, doi:10.1016/0304-4238(85)90011-1.
[5]
Lambrechts, H.; Rook, F.; Koll?fel, C. Carbohydrate status of tulip bulbs during cold-induced flower stalk elongation and flowering. Plant Physiol. 1994, 104, 515–520.
[6]
Rebers, M.; Vermeer, E.; Knegt, E.; Shelton, C.J.; Plas, L.H.W. Gibberellin levels and cold-induced floral stalk elongation in tulip. Physiol. Plant. 1995, 94, 687–691, doi:10.1111/j.1399-3054.1995.tb00985.x.
[7]
Zemah, H.; Bendel, P.; Rabinowitch, H.D.; Kamenetsky, R. Visualization of morphological structure and water status during storage of Allium aflatunense bulbs by NMR imaging. Plant Sci. 1999, 147, 65–73, doi:10.1016/S0168-9452(99)00099-0.
[8]
Van der Toorn, A.; Zemah, H.; van As, H.; Bendel, P.; Kamenetsky, R. Developmental changes and water status in tulip bulbs during storage: Visualization by NMR imaging. J. Exp. Bot. 2000, 51, 1277–1287, doi:10.1093/jexbot/51.348.1277.
[9]
Van Kilsdonk, M.G.; Nicolay, M.G.; Franssen, J.M.; Kolloffel, C. Bud abortion in tulip bulbs studied by magnetic resonance imaging. J. Exp. Bot. 2002, 53, 1603–1611, doi:10.1093/jxb/erf002.
[10]
Kamenetsky, R.; Zemah, H.; Ranwala, A.P.; Vergelt, F.; Ranwala, N.K.; Miller, W.B.; van As, H.; Bendel, P. Water status and carbohydrate pools in tulip bulbs during dormancy release. New Phytol. 2003, 158, 109–118, doi:10.1046/j.1469-8137.2003.00719.x.
[11]
Khodorova, N.V.; Miroslavov, E.A.; Shavarda, A.L.; Laberche, J.C.; Boitel-Conti, M. Bud development in corydalis (Corydalis bracteata) requires low temperature: A study of developmental and carbohydrate changes. Ann. Bot. 2010, 105, 891–903, doi:10.1093/aob/mcq076.
[12]
Khodorova, N.V. A study of adaptation to cold in a geophyte species (Corydalis bracteata (Steph.) Pers, Fumariaceae DC.) and an approach of secondary metabolism during plant development. PhD Thesis, Jules Verne University of Picardy, Amiens, France, 2011.
[13]
Kamenetsky, R.; Okubo, H. Ornamental Geophytes: From Basic Science to Sustainable Production; CRC Press: Boca Raton, FL, USA, 2013; p. 578.
[14]
Noy-Porat, T.; Flaishman, M.A.; Eshel, A.; Sandler-Ziv, D.; Kamenetsky, R. Florogenesis of the Mediterranean geophyte Narcissus tazetta and temperature requirements for flower initiation and differentiation. Sci. Hort. 2009, 120, 138–142, doi:10.1016/j.scienta.2008.09.016.
[15]
Corbesier, L.; Coupland, G. The quest for florigen: Review of recent progress. J. Exp. Bot. 2003, 57, 3395–3403, doi:10.1093/jxb/erl095.
[16]
Horvath, D. Common mechanisms regulate flowering and dormancy. Plant Sci. 2009, 177, 523–531, doi:10.1016/j.plantsci.2009.09.002.
[17]
Wiebe, H.J. Effects of temperature and daylength on bolting of leek (Allium porrum L.). Sci. Hort. 1994, 59, 177–185, doi:10.1016/0304-4238(94)90011-6.
[18]
Ofir, M.; Kigel, J. Opposite effects of daylength and temperature on flowering and summer dormancy of Poa bulbosa. Ann. Bot. 2006, 97, 659–666, doi:10.1093/aob/mcl021.
[19]
Kim, S.H.; Niedziela, C.E.; Nelson, P.V.; de Hertogh, A.A.; Swallow, W.H.; Mingis, N.C. Growth and development of Lilium longiflorum “Nellie White” during bulb production under controlled environments: II. Effects of shifting day/night temperature regimes on scale bulblets. Sci. Hort. 2007, 112, 89–94, doi:10.1016/j.scienta.2006.11.015.
[20]
Kim, S.H.; Niedziela, C.E.; Nelson, P.V.; de Hertogh, A.A.; Swallow, W.H.; Mingis, N.C. Growth and development of Lilium longiflorum “Nellie White” during bulb production under controlled environments: I. Effects of constant, variable and greenhouse day/night temperature regimes on scale and stem bulblets. Sci. Hort. 2007, 112, 95–98, doi:10.1016/j.scienta.2006.11.012.
[21]
Niedziela, C.E.; Kim, S.H.; Nelson, P.V.; de Hertogh, A.A. Effects of N-P-K deficiency and temperature regime on the growth and development of Lilium longiflorum “Nellie White” during bulb production under phytotron conditions. Sci. Hort. 2008, 116, 430–436, doi:10.1016/j.scienta.2008.02.015.
[22]
Balk, P.A.; de Boer, A.D. Rapid stalk elongation in tulip (Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein γTIP. Planta 1999, 209, 346–354, doi:10.1007/s004250050642.
[23]
Eisenbarth, D.; Weig, A.R. Dynamics of aquaporins and water relations during hypocotyl elongation in Ricinus communis L. seedlings. J. Exp. Bot. 2005, 56, 1831–1842, doi:10.1093/jxb/eri173.
[24]
Ehlert, C.; Maurel, C.; Tardieu, F.; Simonneau, T. Aquaporin-Mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant Physiol. 2009, 150, 1093–1104, doi:10.1104/pp.108.131458.
[25]
Samach, A.; Wigge, P.A. Ambient temperature perception in plants. Curr. Opin. Plant Biol. 2005, 8, 483–486, doi:10.1016/j.pbi.2005.07.011.
[26]
Kannerworff, W.A.; van der Plas, L.H.W. Respiration of bulb scale fragments of tulip after storage at 5 °C. Plant Sci. 1994, 104, 31–38, doi:10.1016/0168-9452(94)90188-0.
[27]
Lee, A.K.; Suh, J.K.; Roh, M.S. Flowering and changes in respiration in Asiatic hybrid lilies as influenced by bulb vernalization. Sci. Hort. 2002, 123, 366–371.
[28]
Khodorova, N.V.; Koteyeva, N.K; Miroslavov, E.A. Ultrastructural changes in phloem parenchyma cells in Corydalis bracteata (Fumariaceae) growing outdoors and indoors. Botanicheskii. Z. 2007, 92, 1011–1023.
[29]
Gandin, A.; Gutjahr, S.; Dizengremel, P.; Lapointe, L. Source-Sink imbalance increases with growth temperature in the spring geophyte Erythronium americanum. J. Exp. Bot. 2011, 62, 3467–3479, doi:10.1093/jxb/err020.
[30]
Stitt, M.; Hurry, V. A plant for all seasons: Alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 2002, 5, 199–206, doi:10.1016/S1369-5266(02)00258-3.
[31]
Guy, C.; Kaplan, F.; Kopka, J.; Selbig, J.; Hincha, D.K. Metabolomics of temperature stress. Physiol. Plant. 2008, 132, 220–235.
[32]
Ranwala, A.P.; Miller, W.B. Analysis of nonstructural carbohydrates in storage organs of 30 ornamental geophytes by high-performance anion-exchange chromatography with pulsed amperometric detection. New Phytol. 2008, 180, 421–433, doi:10.1111/j.1469-8137.2008.02585.x.
[33]
Hobson, G.E.; Davies, J.N. Mitochondrial activity and carbohydrate levels in tulip bulbs in relation to cold treatment. J. Exp. Bot. 1977, 28, 559–568, doi:10.1093/jxb/28.3.559.
[34]
Lambrechts, H.; Koll?fel, C. Soluble and insoluble invertase activity in elongating Tulipa gesneriana flower stalk. Physiol. Plant. 1993, 89, 830–834, doi:10.1111/j.1399-3054.1993.tb05292.x.
[35]
Ranwala, A.P.; Miller, W.B. Gibberellin-Mediated changes in carbohydrate metabolism during flower stalk elongation in tulips. Plant Growth Regul. 2008, 55, 241–248, doi:10.1007/s10725-008-9280-9.
[36]
Weschke, W.; Panitz, R.; Gubatz, S.; Wang, Q.; Radchuk, R.; Weber, H.; Wobus, U. The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues in barley caryopses during early development. Plant J. 2003, 3, 395–341.
[37]
Sreenivasulu, N.; Altschmied, L.; Radchuk, V.; Gubatz, S.; Wobus, U.; Weschke, W. Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant J. 2004, 37, 539–553, doi:10.1046/j.1365-313X.2003.01981.x.
[38]
Salerno, G.L.; Curatti, L. Origin of sucrose metabolism in higher plants: When, how and why? Trends Plant Sci. 2003, 8, 63–69, doi:10.1016/S1360-1385(02)00029-8.
[39]
Roitsch, T.; Gonzalez, M.C. Function and regulation of plant invertases: Sweet sensations. Trends Plant Sci. 2004, 9, 606–613, doi:10.1016/j.tplants.2004.10.009.
[40]
Koch, K. Sucrose metabolism: Regulatory mechanism and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7, 235–246, doi:10.1016/j.pbi.2004.03.014.
[41]
Aung, L.H.; de Hertogh, A.A. Temperature regulation of growth and endogenous abscisic acid-like content of Tulipa gesneriana L. Plant. Physiol. 1979, 63, 1111–1116, doi:10.1104/pp.63.6.1111.
Hsu, Y.F.; Tzeng, J.D.; Liu, M.C.; Yei, F.L.; Chung, M.C.; Wang, C.S. Identification of anther-specific/predominant genes regulated by gibberellin during development of lily anthers. J. Plant Physiol. 2008, 165, 553–563, doi:10.1016/j.jplph.2007.01.008.
[44]
Rieu, I.; Ruiz-Rivero, O.; Fernandez-Garcia, N.; Griffiths, J.; Powers, S.J.; Gong, F.; Linhartova, T.; Eriksson, S.; Nilsson, O.; Thomas, S.G.; et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 2008, 53, 488–504.
[45]
King, R.W.; Evans, L.T. Gibberellins and flowering of grasses and cereals: Prizing open the lid of the “florigen” black box. Annu. Rev. Plant Biol. 2003, 54, 307–328, doi:10.1146/annurev.arplant.54.031902.135029.
[46]
Rebers, M.; Romeijn, G.; Knegt, E.; van der Plas, L.H.W. Effects of exogenous gibberellins and paclobutrazol on floral stalk growth of tulip sprouts isolated from cooled and non-cooled tulip bulbs. Physiol. Plant. 1994, 92, 661–667, doi:10.1111/j.1399-3054.1994.tb03037.x.
[47]
Rietveld, P.L.; Wilkinson, C.; Franssen, H.M.; Balk, P.A.; van der Plas, L.H.V.; Weisbeek, P.J.; Douwe de Boer, A. Low temperature sensing in tulip (Tulipa gesneriana L.) is mediated through an increased response to auxin. J. Exp. Bot. 2000, 51, 587–594, doi:10.1093/jexbot/51.344.587.
[48]
Perrot-Rechenmann, C. Cellular responses to auxin: Division versus expansion. Cold Spring Harb. Perspect. Biol. 2010, 2, a001446, doi:10.1101/cshperspect.a001446.
[49]
Okubo, H.; Uemoto, S. Changes in endogenous gibberellin and auxin activities during first internode elongation in tulip flower stalk. Plant Cell Physiol. 1985, 26, 709–719.
[50]
Heggie, L.; Halliday, K.J. The highs and lows of plant life: Temperature and light interactions in development. Int. J. Dev. Biol. 2005, 49, 675–687, doi:10.1387/ijdb.041926lh.
[51]
O’Neill, D.P.; Ross, J.J. Auxin regulation of the gibberellin pathway in pea. Plant Physiol. 2002, 130, 1974–1982, doi:10.1104/pp.010587.
[52]
Ozga, J.A.; Yu, J.; Reinecke, D.M. Pollination-, development-, and auxin-specific regulation of gibberellin 3bet-hydroxylase gene expression in pea fruits and seeds. Plant Physiol. 2003, 131, 1137–1146, doi:10.1104/pp.102.015974.
[53]
Ross, J.J.; Davidson, S.E.; Wolbang, C.M.; Bayly-Stark, E.; Smith, J.J.; Reid, J.B. Developmental regulation of the gibberellin pathway in pea shoots. Funct. Plant Biol. 2003, 30, 83–89, doi:10.1071/FP02108.
[54]
Demason, D.A. Auxin-Cytokinin and auxin-gibberellin interactions during morphogenesis of the compound leaves of pea (Pisum sativum). Planta 2005, 222, 151–166, doi:10.1007/s00425-005-1508-6.
[55]
Bj?rkland, S.; Antti, H.; Uddestrand, I.; Moritz, T.; Sundberg, B. Cross-Talk between gibberellin and auxin in development of poplar wood: Gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J. 2007, 52, 499–511, doi:10.1111/j.1365-313X.2007.03250.x.
[56]
Samach, A. Control of flowering. In Plant Biotechnology and Agriculture. Prospects for the 21st Century; Altman, A., Ed.; Academic Press: London, UK, 2012. Chapter 25; p. 387.
[57]
Mamushina, N.S.; Zubkova, E.K. Effect of temperature on potential photosynthesis and photosynthetic carbon metabolism in C3 plants with different seasonal patterns of development. Russ. J. Plant Physiol. 1996, 43, 313–318.
[58]
Mamushina, N.S.; Voznesenskaya, E.V.; Zubkova, E.K.; Maslova, T.G.; Miroslavov, E.A. Structural and functional changes of mesophyll cells during leaf growth in two species of spring ephemers. Russ. J. Plant Physiol. 2002, 49, 171–178, doi:10.1023/A:1014889120597.
[59]
Mamushina, N.S.; Zubkova, E.K.; Yudina, O.S. Metabolism of 14C-Glycine as a substrate for photorespiration of the leaf at different developmental stages of ephemeroides. Russ. J. Plant Physiol. 2008, 55, 41–47, doi:10.1134/S1021443708010044.
[60]
Lapointe, L.; Lerat, S. Annual growth of the spring ephemeral Erythronium americanum as a function of temperature and mycorrhizal status. Can. J. Bot. 2006, 84, 39–48, doi:10.1139/b05-140.
[61]
Badri, M.A.; Minchin, P.E.; Lapointe, L. Effects of temperature on the growth of spring ephemerals: Crocus vernus. Physiol. Plant. 2007, 130, 67–76, doi:10.1111/j.1399-3054.2007.00882.x.
[62]
Lundmark, M.; Hurry, V.; Lapointe, L. Low temperature maximizes growth of Crocus vernus (L.) Hill via changes in carbon partitioning and corm development. J. Exp. Bot. 2009, 60, 2203–2213, doi:10.1093/jxb/erp103.