全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Plants  2013 

Self-Affinity, Self-Similarity and Disturbance of Soil Seed Banks by Tillage

DOI: 10.3390/plants2030455

Keywords: disturbance, fractal, seed shape, seed size, self-affinity, self-similarity, soil seed banks, tillage

Full-Text   Cite this paper   Add to My Lib

Abstract:

Soil seed banks were sampled in undisturbed soil and after soil had been disturbed by tillage (tine, harrow or plough). Seeds were sorted by size and shape, and counted. Size-number distributions were fitted by power law equations that allowed the identification of self-similarity and self-affinity. Self-affinity and thus non-random size-number distribution prevailed in undisturbed soil. Self-similarity and thus randomness of size-number distribution prevailed after tillage regardless of the intensity of disturbance imposed by cultivation. The values of fractal dimensions before and after tillage were low, suggesting that short-term, short-range factors govern size-number distribution of soil seed banks.

References

[1]  Levin, S.A. The problem of pattern and scale in ecology. Ecology 1992, 73, 1943–1967, doi:10.2307/1941447.
[2]  Lemly, J.M.; Cooper, D.J. Multiscale factors control community and species distribution in mountain peatlands. Botany 2011, 89, 689–713, doi:10.1139/b11-040.
[3]  Harper, J.L. Population Biology of Plants; Academic Press: London, UK, 1977; p. 892.
[4]  Harper, J.L.; Lovell, P.H.; Moore, K.G. The shapes and sizes of seeds. Annu. Rev. Ecol. Syst. 1970, 1, 327–356.
[5]  Drabo, I.; Ladeinde, T.A.O.; Redden, R.; Smithson, J.B. Inheritance of seed size and number per pod in cowpeas (Vigna unguiculata L. Walp.). Field Crops Res. 1985, 11, 335–344.
[6]  Salisbury, E.J. The Reproductive Capacity of Plants. Studies in Quantitative Biology; G. Bell and Sons: London, UK, 1942; p. 244.
[7]  Leishman, M.R.; Wright, I.J.; Moles, A.T.; Westoby, M. The Evolutionary Ecology of Seed Size. In Seeds: The Ecology of Regeneration in Plant Communities, 2nd ed.; Fenner, M., Ed.; CABI Publishing: Wallingford, UK, 2000; pp. 31–57.
[8]  Reader, R.J. Control of seedling emergence by ground cover and seed predation in relation to seed size for some old-field species. J. Ecol. 1993, 81, 169–175, doi:10.2307/2261232.
[9]  Milberg, P.; Andersson, L.; Thompson, K. Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Sci. Res. 2000, 10, 99–74, doi:10.1017/S0960258500000118.
[10]  Thompson, K.; Band, S.R.; Hogdson, J.G. Seed size and shape predict persistence in soil. Funct. Ecol. 1993, 7, 236–241, doi:10.2307/2389893.
[11]  Bekker, R.M.; Bakker, J.P.; Grandin, U.; Kalamees, R.; Milberg, P.; Poschlod, P.; Thompson, K.; Willems, J.H. Seed size, shape and vertical distribution in the soil: Indicators of seed longevity. Funct. Ecol. 1998, 12, 834–842, doi:10.1046/j.1365-2435.1998.00252.x.
[12]  Ghersa, C.M.; Martínez-Ghersa, M.A. Ecological correlates of weed seed size and persistence in the soil under different tilling systems: Implications for weed management. Field Crops Res. 2000, 67, 141–148, doi:10.1016/S0378-4290(00)00089-7.
[13]  Peco, B.; Traba, J.; Levassor, C.; Sánchez, A.M.; Azcárate, F.M. Seed size, shape and persistence in dry Mediterranean grass and scrublands. Seed Sci. Res. 2003, 13, 87–95, doi:10.1079/SSR2002127.
[14]  Baker, H.G. Seed weight in relation to environmental conditions in California. Ecology 1972, 53, 997–1010, doi:10.2307/1935413.
[15]  Leishman, M.R.; Westoby, M. Hypotheses on seed size: Tests using the semiarid flora of Western New South Wales, Australia. Am. Nat. 1994, 143, 890–906.
[16]  Moles, A.T.; Ackerly, D.D.; Webb, C.O.; Tweddle, J.C.; Dickie, J.B.; Westoby, M. A brief history of seed size. Science 2005, 307, 576–580, doi:10.1126/science.1104863.
[17]  Salisbury, E. Seed size and mass in relation to environment. Proc. R. Soc. Lond. B Biol. Sci. 1974, 186, 83–88, doi:10.1098/rspb.1974.0039.
[18]  Primack, R.B. Relationships among flowers, fruits, and seeds. Annu. Rev. Ecol. Syst. 1987, 18, 409–430.
[19]  Cerdà, A.; García-Fayos, P. The influence of seed size and shape on their removal by water erosion. Catena 2002, 48, 293–301, doi:10.1016/S0341-8162(02)00027-9.
[20]  Mara?ón, T.; Grubb, P.J. Physiological basis and ecological significance of the seed size and relative growth rate relationship in Mediterranean annuals. Funct. Ecol. 1993, 7, 591–599, doi:10.2307/2390136.
[21]  Leishman, M.R.; Westoby, M. The role of seed size in seedling establishment in dry soil conditions—Experimental evidence from semi-arid species. J. Ecol. 1994, 82, 249–258, doi:10.2307/2261293.
[22]  Quero, J.L.; Villar, R.; Mara?ón, T.; Zamora, R.; Poorter, L. Seed-mass effects in four Mediterranean Quercus species (Fagaceae) growing in contrasting light environments. Am. J. Bot. 2007, 94, 1795–1803, doi:10.3732/ajb.94.11.1795.
[23]  Mara?ón, T.; Bartolome, J.W. Seed and seedling populations in two contrasted communities: Open grassland and oak (Quercus agrifolia) understory in California. Oecol. Plant. 1989, 10, 147–158.
[24]  Guo, Q.; Brown, J.H.; Valone, T.J.; Kachman, S.D. Constraints of seed size on plant distribution and abundance. Ecology 2000, 81, 2149–2155, doi:10.1890/0012-9658(2000)081[2149:COSSOP]2.0.CO;2.
[25]  Csontos, P.; Tamás, J.; Podani, J. Slope aspects affects the seed mass spectrum of grassland vegetation. Seed Sci. Res. 2004, 14, 349–385.
[26]  Baker, H.G. Some Aspects of the Natural History of Seed Banks. In Ecology of Soil Seed Banks; Leck, M.L., Parker, V.T., Simpson, R.L., Eds.; Academic Press: San Diego, CA, USA, 1989; pp. 9–21.
[27]  Díaz-Villa, M.D.; Mara?on, T.; Arroyo, J.; Garrido, B. Soil seed bank and floristic diversity in a forest-grassland mosaic in southern Spain. J. Veg. Sci. 2003, 14, 701–709, doi:10.1111/j.1654-1103.2003.tb02202.x.
[28]  Templeton, A.R.; Levin, D.A. Evolutionary consequences of seed pools. Am. Nat. 1979, 114, 232–249.
[29]  Mandák, B.; Zákravsky, P.; Mahelka, V.; Pla?ková, I. Can soil seed banks serve as genetic memory? A study of three species with contrasting life history strategies. PLoS One 2012, 7, 1–12.
[30]  Casco, H.; Dias, A.S.; Dias, L.S. Modeling size-number distributions of seeds for use in soil bank studies. J. Integr. Plant Biol. 2008, 50, 531–535, doi:10.1111/j.1744-7909.2008.00659.x.
[31]  Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297.
[32]  Turcotte, D.L. Fractals and fragmentation. J. Geophys. Res. 1986, 91, 1921–1926, doi:10.1029/JB091iB02p01921.
[33]  Lord, J.; Westoby, M.; Leishman, M. Seed size and philogeny in six temperate floras: Constraints, niche conservatism, and adaptation. Am. Nat. 1995, 146, 349–364.
[34]  Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638.
[35]  Mandelbrot, B.B. The Fractal Geometry of Nature; Freeman: New York, NY, USA, 1983; p. 468.
[36]  Stanley, H.E.; Meakin, P. Multifractal phenomena in physics and chemistry. Nature 1988, 335, 405–409, doi:10.1038/335405a0.
[37]  Scheuring, I.; Riedl, R.H. Applications of multifractals to the analysis of vegetation pattern. J. Veg. Sci. 1994, 5, 489–496, doi:10.2307/3235975.
[38]  Burrough, P.A. Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation. J. Soil Sci. 1983, 34, 577–597, doi:10.1111/j.1365-2389.1983.tb01057.x.
[39]  Casco, H.; Dias, L.S. Estimating seed mass and volume from linear dimensions of seeds. Seed Sci. Technol. 2008, 36, 230–236.
[40]  Williams, G.H. Dictionary of Weeds of Western Europe; Elsevier: Amsterdam, The Netherlands, 1982; p. 320.
[41]  Cavers, P.B.; Benoit, D.L. Seed Banks in Arable Land. In Ecology of Soil Seed Banks; Leck, M.L., Parker, V.T., Simpson, R.L., Eds.; Academic Press: San Diego, CA, USA, 1989; pp. 309–328.
[42]  Van Esso, M.L.; Ghersa, C.M.; Soriano, A. Cultivation effects on the dynamics of a johnson grass seed population in the soil profile. Soil Tillage Res. 1986, 6, 325–335, doi:10.1016/0167-1987(86)90031-0.
[43]  Walter, D.J.; Kenkel, N.C. Landscape complexity in space and time. Community Ecol. 2001, 2, 109–119, doi:10.1556/ComEc.2.2001.1.12.
[44]  Cousens, R.; Wallinga, J.; Shaw, M. Are the spatial patterns of weeds scale-invariant? Oikos 2004, 107, 251–264.
[45]  Walter, D.J.; Kenkel, N.C. Fractal analysis of spatio-temporal dynamics in boreal forest landscapes. Abstr. Bot. 1998, 22, 13–28.
[46]  Palmer, M.W. Fractal geometry: A tool for describing spatial patterns of plant communities. Vegetatio 1988, 75, 91–102, doi:10.1007/BF00044631.
[47]  Vedyushkin, M.A. Fractal properties of forest spatial structure. Vegetatio 1994, 113, 65–70, doi:10.1007/BF00045464.
[48]  Tyler, S.W.; Wheatcraft, S.W. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 1989, 53, 987–996, doi:10.2136/sssaj1989.03615995005300040001x.
[49]  Wu, Q.; Borkovec, M.; Sticher, H. On particle-size distributions in soils. Soil Sci. Soc. Am. J. 1993, 57, 883–890, doi:10.2136/sssaj1993.03615995005700040001x.
[50]  Perfect, E.; Kay, B.D.; Ferguson, J.A.; Silva, A.P.; Denholm, K.A. Comparison of functions for characterizing the dry aggregate size distribution of tilled soil. Soil Tillage Res. 1993, 28, 123–139, doi:10.1016/0167-1987(93)90022-H.
[51]  Thompson, K.; Bakker, J.P.; Bekker, R.M. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity; Cambridge University Press: Cambridge, UK, 1997; p. 276.
[52]  Malone, C.R. A rapid method for enumeration of viable seeds in soil. Weeds 1967, 15, 381–382, doi:10.2307/4041016.
[53]  Ball, D.A.; Miller, S.D. A comparison of techniques for estimation of arable soil seedbanks and their relationship to weed flora. Weed Res. 1989, 29, 365–373, doi:10.1111/j.1365-3180.1989.tb01307.x.
[54]  Roberts, H.A.; Ricketts, M.E. Quantitative relationships between the weed flora after cultivation and the seed population in the soil. Weed Res. 1979, 19, 269–275, doi:10.1111/j.1365-3180.1979.tb01537.x.
[55]  Vasconcellos, J.C. Sementes Estranhas do Trigo; Federa??o Nacional dos Produtores de Trigo: Lisboa, Portugal, 1968; p. 114.
[56]  Delorit, R.J. An Illustrated Taxonomy Manual of Weed Seeds; Agronomy Publications: River Falls, WI, USA, 1970; p. 175.
[57]  Villarias, J.L. Control de Malas Hierbas. I Atlas de Malas Hierbas, 2nd ed. ed.; Mundi-Prensa: Madrid, Spain, 1979; p. 301.
[58]  Delorit, R.J.; Gunn, C.R. Seeds of Continental United States Legumes (Fabaceae); Agronomy Publications: River Falls, WI, USA, 1986; p. 134.
[59]  Elmore, C.D. Weed Identification Guide; Southern Weed Science Society: Champaign, IL, USA, 1985.
[60]  The Plant List. Available online: http://www.theplantlist.org/ (accessed on 8 November 2012).
[61]  Ury, H.K. A comparison of four procedures for multiple comparisons among means (pairwise contrasts) for arbitrary sample sizes. Technometrics 1976, 18, 89–97, doi:10.2307/1267921.
[62]  Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed. ed.; Freeman: New York, NY, USA, 1995; p. 887.
[63]  Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. B 1964, 26, 211–252.
[64]  Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed. ed.; Wiley: New York, NY, USA, 1998; p. 706.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133