全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Plants  2013 

Network Connectance Analysis as a Tool to Understand Homeostasis of Plants under Environmental Changes

DOI: 10.3390/plants2030473

Keywords: network connectance, physiological network, stability, water deficit, low and high temperature, C3 and C4 photosynthetic type metabolisms

Full-Text   Cite this paper   Add to My Lib

Abstract:

The homeostasis of plants under environmental constraints may be maintained by alterations in the organization of their physiological networks. The ability to control a network depends on the strength of the connections between network elements, which is called network connectance. Herein, we intend to provide more evidence on the existence of a modulation pattern of photosynthetic networks, in response to adverse environmental conditions. Two species ( Glycine max-C3 metabolism, and Brachiaria brizantha-C4 metabolism) were submitted to two environmental constraints (water availability, and high and low temperatures), and from the physiological parameters measured, the global connectance ( Cgtotal) and the modules connectance (gas exchange-Cg ge and photochemical-Cg pho) were analyzed. Both types of environmental constraints impaired the photosynthetic capacity and the growth of the plants, indicating loss of their homeostasis, but in different ways. The results showed that in general the Cgtotal of both species increased with temperature increment and water deficit, indicating a higher modulation of photosynthetic networks. However, the Cg variation in both species did not influence the total dry biomass that was reduced by environmental adversities. This outcome is probably associated with a loss of system homeostasis. The connectance network analyses indicated a possible lack of correspondence between the photosynthetic networks modulation patterns and the homeostasis loss. However, this kind of analysis can be a powerful tool to access the degree of stability of a biological system, as well as to allow greater understanding of the dynamics underlying the photosynthetic processes that maintain the identity of the systems under environmental adversities.

References

[1]  Souza, G.M.; Ribeiro, R.V.; Pincus, S.M. Changes in network connectance and temporal dynamics of gas exchange in Citrus sinensis under different evaporative demands. Braz. Plant Physiol. 2004, 16, 119–130.
[2]  Souza, G.M.; Ribeiro, R.V.; Prado, C.H.B.S.; Damineli, D.S.C.; Sato, A.M.; Oliveira, M.S. Using network connectance and autonomy analyses to uncover patterns of photosynthetic responses in tropical woody species. Ecol. Complex. 2009, 6, 15–26, doi:10.1016/j.ecocom.2008.10.002.
[3]  Von Bertalanffy, L. General System Theory, Revised ed. ed.; George Braziller: New York, NY, USA, 1968; p. 296.
[4]  Barabási, A.-L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101–113, doi:10.1038/nrg1272.
[5]  Voit, E.; Neves, A.R.; Santos, H. The intricate side of systems biology. Proc. Natl. Acad. Sci. USA 2006, 103, 9452–9457, doi:10.1073/pnas.0603337103.
[6]  Sweetlove, L.J.; Fernie, A.R. Regulations of metabolic networks: Understanding metabolic complexity in the systems biology era. New Phytol. 2005, 168, 9–24, doi:10.1111/j.1469-8137.2005.01513.x.
[7]  Dietz, K.-J.; Jacquot, J.-P.; Harris, G. Hubs and bottlenecks in plant molecular signaling networks. New Phytol. 2010, 188, 919–938, doi:10.1111/j.1469-8137.2010.03502.x.
[8]  Lucas, M.; Laplaze, L.; Bennett, M.J. Plant systems biology: Network matters. Plant Cell Environ. 2011, 34, 535–553, doi:10.1111/j.1365-3040.2010.02273.x.
[9]  Souza, G.M.; Pincus, S.M.; Monteiro, J.A.F. The complexity-stability hypothesis in plant gas exchange under water deficit. Braz. J. Plant Physiol. 2005, 17, 363–373.
[10]  Amzallag, G.N. Data analysis in plants physiology: Are we missing the reality? Plant. Cell Environ. 2001, 24, 881–890.
[11]  Souza, G.M.; Ribeiro, R.V.; Oliveira, R.F.; Machado, E.C. Network connectance and autonomy analyses of the photosynthetic apparatus in tropical tree species from different successional groups under contrasting irradiance conditions. Braz. J. Bot. 2005, 28, 47–59, doi:10.1590/S0100-84042005000100005.
[12]  Gardner, M.R.; Ashby, R. Connectance of large dynamic (cybernetic) systems: Critical values for stability. Nature 1970, 228, 784.
[13]  Csermely, P. Weak. Links: Stabilizers. of Complex Systems from Proteins to Social Networks; Springer-Verlag: Berlin, Germany, 2006; p. 392.
[14]  Amzallag, G.N. Connectance in Sorghum development: Beyond the genotype-phenotype duality. BioSystems 2000, 56, 1–11, doi:10.1016/S0303-2647(00)00068-X.
[15]  Camargo-Bortolin, L.H.G.; Prado, C.H.B.A.; Souza, G.M.; Novaes, P. Autonomy and network modulation of photosynthesis and water relations of Coffea. arabica in the field. Braz. J. Plant Physiol. 2008, 20, 141–151.
[16]  Sato, A.M.; Catuchi, T.A.; Ribeiro, R.V.; Souza, G.M. The use of network analysis to uncover homeostatic responses of a drought-tolerant sugarcane cultivar under severe water deficit and phosphorus supplying. Physiol. Mol. Plant Pathol. 2010, 32, 1145–1151.
[17]  Prado, C.H.B.A.; Wenhui, Z.; Rojas, M.H.C.; Souza, G.M. Seasonal leaf gas exchange and water potential in a woody cerrado species community. Braz. J. Plant. Physiol. 2004, 16, 7–16.
[18]  Lawlor, D.W.; Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot. 2009, 103, 561–579, doi:10.1093/aob/mcn244.
[19]  Pinheiro, C.; Chaves, M.M. Photosynthesis and drought: Can we make metabolic connections from avaiable data? J. Exp. Bot. 2011, 62, 869–882, doi:10.1093/jxb/erq340.
[20]  Sage, R.F.; Kubien, D.S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 2007, 30, 1086–1106, doi:10.1111/j.1365-3040.2007.01682.x.
[21]  Dywer, S.A.; Ghannoum, O.; Nicotra, A.; von Caemmerer, S. High temperature acclimatation of C4 photosynthesis is linked to changes in photosynthetic biochemistry. Plant Cell Environ. 2007, 30, 53–66.
[22]  Berry, J.A.; Bj?rkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 1980, 31, 491–543, doi:10.1146/annurev.pp.31.060180.002423.
[23]  Al-Khatib, K.; Paulsen, G.M. Mode of high Temperature injury to wheat during grain development. Physiol. Plant. 1984, 3, 363–368, doi:10.1111/j.1399-3054.1984.tb06341.x.
[24]  Lobell, D.B.; Sibley, A.; Ortiz-Monasterio, J.I. Extreme heat effects on wheat senescence in India. Nat. Clim. Chang. 2012, 2, 186–189, doi:10.1038/nclimate1356.
[25]  Kaiser, W.M. Effects of Water deficit on photosynthetic capacity. Physiol. Plant 1987, 71, 142–149, doi:10.1111/j.1399-3054.1987.tb04631.x.
[26]  Lawlor, D.W.; Cornic, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002, 25, 275–294, doi:10.1046/j.0016-8025.2001.00814.x.
[27]  Parry, M.A.J.; Andralojc, P.J.; Khan, S.; Lea, P.J.; Keys, A.J. Rubisco activity: Effects of drought stress. Ann. Bot. 2002, 89, 833–839, doi:10.1093/aob/mcf103.
[28]  Chaves, M.M.; Oliveira, M.M. Mechanisms underlying plant resilience to water deficit: Prospects for water-saving agriculture. J. Exp. Bot. 2004, 55, 2365–2384, doi:10.1093/jxb/erh269.
[29]  Trewavas, A.J. Resource allocation under poor growth conditions. A major role for growth substances in plasticity. In Plasticity in Plants; Jennings, D.H., Trewavas, A.J., Eds.; Society for Experimental Biology by the Company of Biologists: Cambridge, UK, 1986; pp. 31–77.
[30]  Edelman, G.M.; Gally, J.A. Degeneracy and complexity in biological systems. Proc. Natl. Aacd. Sci. USA 2001, 98, 13763–13768, doi:10.1073/pnas.231499798.
[31]  Souza, G.M.; Ribeiro, R.V.; Santos, M.G.; Ribeiro, H.L.; Oliveira, R.V. Functional groups of forest succession as dissipative structures: An applied study. Braz. Plant Physiol. 2004, 64, 707–718.
[32]  Barbosa, J.P.R.A.; Rambal, S.; Soares, A.M.; Mouillot, F.; Nogueira, J.M.P.; Martins, G.A. Plant physiological ecology and the global changes. Ciênc. Agrotec. 2012, 36, 253–269, doi:10.1590/S1413-70542012000300001.
[33]  Wertin, T.M.; Mcguire, M.A.; Teskey, R.O. The influence of elevated temperature, elevated CO2 concentration and water stress on set photosynthesis of loblolly pine (Pinus taeda L.) at northern, central and southern sites in its native range. Glob. Change Biol. 2010, 16, 2089–2103, doi:10.1111/j.1365-2486.2009.02053.x.
[34]  Prior, S.A.; Runion, G.B. A Review of Elevated Atmospheric CO2 Effects on Plant Growth and Water Relations: Implications for Horticulture. HortScience 2011, 46, 158–162.
[35]  Grimm, V.; Wissel, C. Babel, or the ecological stability discussions: An inventory and analysis of terminology and a guide for avoiding confusion. Oecologia 1997, 109, 323–334, doi:10.1007/s004420050090.
[36]  M?ller, A.P.; Swaddle, J.P. Asymmetry, Developmental Stability and Evolution; Oxford University Press: Oxford, UK, 1997.
[37]  Leps, J.; Osbornova-Kosinova, J.; Rejmánek, M. Community stability, complexity and species life history strategies. Vegetatio 1982, 50, 53–63, doi:10.1007/BF00120678.
[38]  Wagner, A. Robustness and Evolvability in Living Systems; Princeton University Press: Princeton, NJ, USA, 2005; p. 367.
[39]  Rojdestvenski, I.; Cottam, M.; Park, Y.; ?quist, G. Robustness and time-scale hierarchy in biological systems. BioSystems 1999, 50, 71–82, doi:10.1016/S0303-2647(98)00092-6.
[40]  Souza, G.M.; Cardoso, J.V.M. Toward a hierarchical concept of plant stress. Israel J. Plant Sci. 2003, 51, 29–37, doi:10.1560/P6TM-RJEL-R5FU-Q039.
[41]  Vítolo, H.F.; Souza, G.M.; Silveira, J. Cross-scale multivariate analysis of physiological responses to high temperature in two tropical crops with C3 and C4 metabolism. Environ. Exp. Bot. 2012, 80, 54–62.
[42]  Novikoff, A.B. The concept of integrative levels and biology. Science 1945, 101, 209–215.
[43]  Kauffman, S.A. The Origins of Order: Self-Organization and Selection in Evolution, 1st ed. ed.; Oxford University Press: New York, NY, USA, 1993; p. 734.
[44]  Liu, Y.-Y.; Slotine, J.-J.; Barabási, A.-L. Controllability of complex networks. Nature 2011, 473, 167–173, doi:10.1038/nature10011.
[45]  Ferrarini, A. Some thoughts on the control of network systems. Netw. Biol. 2011, 1, 3–4.
[46]  Prado, C.H.B.A.; Moraes, J.A.P.V. Photosynthetic capacity and specific leaf mass in twenty woody species of cerrado vegetation under field conditions. Photosynthetica 1997, 33, 103–112, doi:10.1023/A:1022183423630.
[47]  Long, S.P.; Bernacchi, C.J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J. Exp. Bot. 2003, 54, 2393–2401, doi:10.1093/jxb/erg262.
[48]  Monteiro, J.A.; Prado, C.H.B.A. Apparent carboxylation efficiency and relative stomatal and mesophyll limitations of photosynthesis in an evergreen cerrado species during water stress. Photosynthetica 2006, 44, 39–45, doi:10.1007/s11099-005-0156-1.
[49]  Sharkey, T.D. Estimating the rate of photorespiration in leaves. Physiol. Plant 1988, 73, 147–152, doi:10.1111/j.1399-3054.1988.tb09205.x.
[50]  Sharkey, T.D.; Bernacchi, C.J.; Farquhar, G.D.; Singsaas, E.L. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 2007, 30, 1035–1040, doi:10.1111/j.1365-3040.2007.01710.x.
[51]  Von Caemmerer, S. Biochemical Models of Leaf Photosynthesis. Techniques in Plant Science; CSIRO Publishing: Collingwood, Australia, 2000; p. 152.
[52]  Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345, doi:10.1146/annurev.pp.33.060182.001533.
[53]  Van Koten, O.; Snel, J.F.H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosyn. Res. 1990, 25, 147–150, doi:10.1007/BF00033156.
[54]  Bilguer, W.; Schreiber, U.; Bock, M. Determination of the quantum efficiency of photosystem II and non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 1995, 102, 425–432, doi:10.1007/BF00341354.
[55]  Baker, N.R.; Rosenqvist, E. Applications of chlorophyll florescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621, doi:10.1093/jxb/erh196.
[56]  Ribeiro, R.V.; Machado, E.D.; Oliveira, R.F. Early photosynthetic responses of sweet Orange plants infected with Xylella fastidiosa. Physiol. Mol. Plant Pathol. 2003, 62, 167–173, doi:10.1016/S0885-5765(03)00038-9.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133