全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Plants  2013 

Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development

DOI: 10.3390/plants2030489

Keywords: heat stress, pollen development, male sterility, fruit set, tomato

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sexual reproduction in flowering plants is very sensitive to environmental stresses, particularly to thermal insults which frequently occur when plants grow in field conditions in the warm season. Although abnormalities in both male and female reproductive organs due to high temperatures have been described in several crops, the failure to set fruits has mainly been attributed to the high sensitivity of developing anthers and pollen grains, particularly at certain developmental stages. A global view of the molecular mechanisms involved in the response to high temperatures in the male reproductive organs will be presented in this review. In addition, transcriptome and proteomic data, currently available, will be discussed in the light of physiological and metabolic changes occurring during anther and pollen development. A deep understanding of the molecular mechanisms involved in the stress response to high temperatures in flowers and, particularly, in the male reproductive organs will be a major step towards development of effective breeding strategies for high and stable production in crop plants.

References

[1]  Warrag, M.O.A.; Hall, A.E. Reproductive responses of cowpea [Vigna. unguiculata L. (Walp.)] to heat stress. II. Response to night air temperature. Field Crops Res. 1984, 8, 17–33, doi:10.1016/0378-4290(84)90049-2.
[2]  Monterroso, V.A.; Wien, H.C. Flower and pod abscission due to heat stress in beans. J. Am. Soc. Hortic. Sci. 1990, 115, 631–634.
[3]  Peet, M.M.; Sato, S.; Gardner, R.G. Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell Environ. 1998, 21, 225–231, doi:10.1046/j.1365-3040.1998.00281.x.
[4]  Erickson, A.N.; Markhart, A.H. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ. 2002, 25, 123–130, doi:10.1046/j.0016-8025.2001.00807.x.
[5]  Abdul-Baki, A.A.; Stommel, J.R. Pollen viability and fruit set of tomato genotypes under optimum and high-temperature regimes. HortScience 1995, 30, 115–117.
[6]  Rudich, J.; Zamski, E.; Regev, Y. Genotype variation for sensitivity to high temperature in the tomato: Pollination and fruit set. Bet. Gaz. 1977, 138, 448–452.
[7]  Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223, doi:10.1016/j.envexpbot.2007.05.011.
[8]  Senthil-Kumar, M.; Kumar, G.; Srikanthbabu, V.; Udayakumar, M. Assessment of variability in acquired thermotolerance: Potential option to study genotypic response and the relevance of stress genes. J. Plant Physiol. 2007, 164, 111–125, doi:10.1016/j.jplph.2006.09.009.
[9]  Kotak, S.; Larkindale, J.; Lee, U.; von Koskull-D?ring, P.; Vierling, E.; Scharf, K.D. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 2007, 10, 310–316, doi:10.1016/j.pbi.2007.04.011.
[10]  Larkindale, J.; Vierling, E. Core genome responses involved in acclimation to high temperature. Plant Physiol. 2008, 146, 748–761, doi:10.1104/pp.107.112060.
[11]  Goldberg, R.B.; Beals, T.P.; Sanders, P.M. Anther development: Basic principles and practical applications. Plant Cell 1993, 10, 1217–1229.
[12]  Ma, H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu. Rev. Plant Biol. 2005, 56, 393–434, doi:10.1146/annurev.arplant.55.031903.141717.
[13]  Scott, R.J.; Spielman, M.; Dickinson, H.G. Stamen structure and function. Plant Cell 2004, 16, S46–S60, doi:10.1105/tpc.017012.
[14]  Owen, H.A.; Makaroff, C.A. Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 1995, 185, 7–21, doi:10.1007/BF01272749.
[15]  Yamamoto, Y.; Nishimura, M.; Hara-Nishimura, I.; Noguchi, T. Behavior of vacuoles during microspore and pollen development in Arabidopsis thaliana. Plant Cell Physiol. 2003, 44, 1192–1201, doi:10.1093/pcp/pcg147.
[16]  Borg, M.; Brownfield, L.; Twell, D. Male gametophyte development: A molecular perspective. J. Exp. Bot. 2009, 60, 1465–1478, doi:10.1093/jxb/ern355.
[17]  Pacini, E. Types and meaning of pollen carbohydrate reserves. Sex. Plant Reprod. 1996, 9, 362–366, doi:10.1007/BF02441957.
[18]  Schwacke, R.; Grallath, S.; Breitkreuz, K.E.; Stransky, E.; Stransky, H.; Frommer, W.B.; Rentsch, D. LeProT1, a transporter for proline, glycine betaine, and {Gamma}-amino butyric acid in tomato pollen. Plant Cell 1999, 11, 377–391.
[19]  Kim, S.Y.; Hong, C.B.; Lee, I. Heat hock stress causes stage-specific male sterility in Arabidopsis thaliana. J. Plant Res. 2001, 114, 301–307, doi:10.1007/PL00013991.
[20]  Sakata, T.; Higashitani, A. Male sterility accompanied with abnormal anther development in plants—genes and environmental stresses with special reference to high temperature injury. Int. J. Plant Dev. Biol. 2008, 2, 42–51.
[21]  Iwahori, S. High temperature injuries in tomato. V. Fertilization and development of embryo with special reference to the abnormalities caused by high temperature. J. Jpn. Soc. Hortic. Sci. 1966, 35, 379–386, doi:10.2503/jjshs.35.379.
[22]  Sato, S.; Peet, M.M.; Thomas, J.F. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill) under chronic, mild heat stress. Plant Cell Environ. 2000, 23, 719–726, doi:10.1046/j.1365-3040.2000.00589.x.
[23]  Sato, S.; Peet, M.M.; Thomas, J.F. Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill exposed to moderately elevated temperatures. J. Exp. Bot. 2002, 53, 1187–1195, doi:10.1093/jexbot/53.371.1187.
[24]  Oshino, T.; Abiko, M.; Saito, R.; Ichiishi, E.; Endo, M.; Kawagishi-Kobayashi, M.; Higashitani, A. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol. Genet. Genomics 2007, 278, 31–42, doi:10.1007/s00438-007-0229-x.
[25]  Mariani, C.; de Beuckeleer, M.; Truettner, J.; Leemans, J.; Goldberg, R.B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 1990, 347, 737–741, doi:10.1038/347737a0.
[26]  Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63, doi:10.1038/nrg2484.
[27]  Schmidt, A.; Schmid, M.W.; Grossniklaus, U. Analysis of plant germline development by high-throughput RNA profiling: Technical advances and new insights. Plant J. 2012, 70, 18–29, doi:10.1111/j.1365-313X.2012.04897.x.
[28]  Honys, D.; Twell, D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004, 5, 85, doi:10.1186/gb-2004-5-11-r85.
[29]  Wei, L.Q.; Xu, W.Y.; Deng, Z.Y.; Su, Z.; Xue, Y.; Wang, T. Genome scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics. 2010, 11, 338.
[30]  Xin, H.P.; Sun, M.X. What we have learned from transcript profile analyses of male and female gametes in flowering plants. Sci. China Life Sci. 2010, 53, 927–933, doi:10.1007/s11427-010-4033-1.
[31]  Hu, T.-X.; Miao, Y.U.; Zhao, J. Techniques of cell type-specific transcriptome analysis and application in researches of sexual plant reproduction. Front. Biol. 2011, 6, 31–39, doi:10.1007/s11515-011-1090-1.
[32]  Cui, X.; Wang, Q.; Yin, W.; Xu, H.; Wilson, Z.A.; Wei, C.; Pan, S.; Zhang, D. PMRD: A curated database for genes and mutants involved in plant male reproduction. BMC Plant Biol. 2012, 12, 215, doi:10.1186/1471-2229-12-215.
[33]  Yang, H.; Lu, P.; Wang, Y.; Ma, H. The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: The complexity and evolution of the meiotic process. Plant J. 2011, 65, 503–516, doi:10.1111/j.1365-313X.2010.04439.x.
[34]  Zimmermann, P.; Hirsch-Hoffmann, M.; Hennig, L.; Gruissem, W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004, 136, 4335, doi:10.1104/pp.104.900131.
[35]  Pina, C.; Pinto, F.; Feijo, J.A.; Becker, J.D. Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 2005, 138, 744–756, doi:10.1104/pp.104.057935.
[36]  Honys, D.; Twell, D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 2003, 132, 640–652, doi:10.1104/pp.103.020925.
[37]  McCormick, S. Control of male gametophyte development. Plant Cell 2004, 16, S142–S153, doi:10.1105/tpc.016659.
[38]  Frank, G.; Pressman, E.; Ophir, R.; Althan, L.; Shaked, R.; Freedman, M.; Shen, S.; Firon, N. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot. 2009, 60, 3891–3908, doi:10.1093/jxb/erp234.
[39]  Bita, C.E.; Zenoni, S.; Vriezen, W.H.; Mariani, C.; Pezzotti, M.; Gerats, T. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genomics 2011, 12, 384, doi:10.1186/1471-2164-12-384.
[40]  Alba, R.; Fei, Z.; Payton, P.; Liu, Y.; Moore, S.L.; Debbie, P.; Cohn, J.; D’Ascenzo, M.; Gordon, J.S.; Rose, J.K.; et al. ESTs, cDNA microarrays, and gene expression profiling: Tools for dissecting plant physiology and development. Plant J. 2004, 39, 697–714, doi:10.1111/j.1365-313X.2004.02178.x.
[41]  Endo, M.; Tsuchiya, T.; Hamada, K.; Kawamura, S.; Yano, K.; Ohshima, M.; Higashitani, A.; Watanabe, M.; Kawagishi-Kobayashi, M. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol. 2009, 50, 1911–1922, doi:10.1093/pcp/pcp135.
[42]  Zhang, X.; Li, J.; Liu, A.; Zou, J.; Zhou, X.; Xiang, J.; Rerksiri, W.; Peng, Y.; Xiong, X.; Chen, X. Expression profile in rice panicle: Insights into heat response mechanism at reproductive stage. PLoS One 2012, 7, e49652.
[43]  Abiko, M.; Akibayashi, K.; Sakata, T.; Kimura, M.; Kihara, M.; Kazutoshi Itoh, K.; Asamizu, E.; Sato, S.; Takahashi, H.; Higashitani, A. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sex. Plant Reprod. 2005, 18, 91–100, doi:10.1007/s00497-005-0004-2.
[44]  Cheng, Y.; Dai, X.; Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006, 20, 1790–1799, doi:10.1101/gad.1415106.
[45]  Cecchetti, V.; Altamura, M.M.; Falasca, G.; Costantino, P.; Cardarelli, M. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 2008, 20, 1760–1774, doi:10.1105/tpc.107.057570.
[46]  Plackett, A.R.; Thomas, S.G.; Wilson, Z.A.; Hedden, P. Gibberellin control of stamen development: A fertile field. Trends Plant Sci. 2011, 16, 568–578, doi:10.1016/j.tplants.2011.06.007.
[47]  Kovaleva, L.V.; Dobrovolskaya, A.; Voronkov, A.; Rakitin, V. Ethylene is involved in the control of male gametophyte development and germination in petunia. J. Plant Growth Reg. 2010, 30, 64–73.
[48]  Chibi, F.; Mattilla, A.J. The involvement of ethylene in vitro maturation of mid-binucleate pollen of Nicotiana tabacum. J. Exp. Bot. 2010, 45, 529–532, doi:10.1093/jxb/45.5.529.
[49]  Feng, X.L.; Ni, W.M.; Elge, S.; Mueller-Roeber, B.; Xu, Z.H.; Xue, H.W. Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol. Biol. 2006, 61, 215–226, doi:10.1007/s11103-006-0005-z.
[50]  Sakata, T.; Oshino, T.; Miura, S.; Tomabechi, M.; Tsunaga, Y.; Higashitani, N.; Miyazawa, Y.; Takahashi, H.; Watanabe, M.; Higashitani, A. Auxins reverse plant male sterility caused by high temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 8569–8574, doi:10.1073/pnas.1000869107.
[51]  Firon, N.; Pressman, E.; Meir, S.; Khoury, R.; Altahan, L. Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB Plants 2012, pls024.
[52]  Scharf, K.D.; Berberich, T.; Ebersberger, I.; Nover, L. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim. Biophys. Acta 2012, 1819, 104–119, doi:10.1016/j.bbagrm.2011.10.002.
[53]  Sun, W.; van Montagu, M.; Verbruggen, N. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta 2002, 1577, 1–9, doi:10.1016/S0167-4781(02)00417-7.
[54]  Von Koskull-D?ring, P.; Scharf, K.D.; Nover, L. The diversity of plant heat stress transcription factors. Trends Plant Sci. 2007, 12, 452–457, doi:10.1016/j.tplants.2007.08.014.
[55]  Hong, S.W.; Vierling, E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Natl. Acad. Sci. USA 2000, 97, 4392–4397, doi:10.1073/pnas.97.8.4392.
[56]  Mascarenhas, J.P.; Crone, E.C. Pollen and the heat shock response. Sex. Plant. Reprod. 1996, 9, 370–374, doi:10.1007/BF02441959.
[57]  Pelham, H.R. A regulatory upstream promoter element in the Drosophila Hsp 70 heat-shock gene. Cell 1982, 30, 517–528, doi:10.1016/0092-8674(82)90249-5.
[58]  Volkov, R.A.; Panchuk, I.I.; Sch?ffl, F. Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol. Biol. 2005, 57, 487–502, doi:10.1007/s11103-005-0339-y.
[59]  Giorno, F.; Wolters-Arts, M.; Grillo, S.; Scharf, K.D.; Vriezen, W.H.; Mariani, C. Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 2010, 61, 453–462, doi:10.1093/jxb/erp316.
[60]  Bukau, B.; Weissman, J.; Horwich, A. Molecular chaperones and protein quality control. Cell 2006, 125, 443–451, doi:10.1016/j.cell.2006.04.014.
[61]  Prahlad, V.; Morimoto, R.I. Integrating the stress response: Lessons for neurodegenerative diseases from C. elegans. Trends Cell Boil. 2009, 19, 52–61, doi:10.1016/j.tcb.2008.11.002.
[62]  Nover, L.; Neumann, D.; Scharf, K.D. Heat Shock and Other Stress Response Systems of Plants; Berlin Springer Verlag: Berlin, Germany, 1989.
[63]  Krishna, P. Plant responses to heat stress. In Plant Responses to Abiotic Stress; Springer: Berlin/Heidelber, Germany, 2003; pp. 73–101.
[64]  Baniwal, S.K.; Bharti, K.; Chan, K.Y.; Fauth, M.; Ganguli, A.; Kotak, S.; Mishra, S.K.; Nover, L.; Port, M.; Scharf, K.D.; et al. Heat stress response in plants: A complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 2004, 29, 471–487, doi:10.1007/BF02712120.
[65]  Wehmeyer, N.; Vierling, E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 2000, 122, 1099–1108, doi:10.1104/pp.122.4.1099.
[66]  Dafny-Yelin, M.; Tzfira, T.; Vainstein, A.; Adam, Z. Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis. Plant Mol. Biol. 2008, 67, 363–373, doi:10.1007/s11103-008-9326-4.
[67]  heoran, I.S.; Ross, A.R.S.; Olson, D.J.H.; Sawhney, V.K. Proteomic analysis of tomato, (Lycopersicon. esculentum) pollen. J. Exp. Bot. 2007, 58, 3525–3535, doi:10.1093/jxb/erm199.
[68]  Bouchard, R. Characterization of expressed meiotic prophase repeat transcript clones of Lilium: Meiosis-specific expression, relatedness, and affinities to small heat-shock protein genes. Genome 1990, 33, 68–79, doi:10.1139/g90-012.
[69]  Atkinson, B.G.; Raizada, M.; Bouchard, R.A.; Frappier, R.H.; Walden, D.B. The independent stage-specific expression of the 18-kDa heat shock protein genes during microsporogenesis in Zea mays L. Dev. Genet. 1993, 14, 15–26, doi:10.1002/dvg.1020140104.
[70]  Reynolds, T. Pollen embryogenesis. Plant Mol. Biol. 1997, 33, 1–10, doi:10.1023/A:1005748614261.
[71]  Schulze, W.X.; Usadel, B. Quantitation in mass-spectrometry-based proteomics. Annu. Rev. Plant Biol. 2010, 61, 491–516, doi:10.1146/annurev-arplant-042809-112132.
[72]  Wiese, S.; Reidegeld, K.A.; Meyer, H.E.; Warscheid, B. Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7, 340–350.
[73]  Holmes-Davies, R.; Tanaka, C.K.; Vensel, W.H.; Hurkman, W.J; McCormick, S. Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 2005, 5, 4864–4884, doi:10.1002/pmic.200402011.
[74]  Dai, S.; Chen, T.; Chong, K.; Xue, Y.; Liu, S.; Wang, T. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol. Cell Proteomics 2007, 6, 207–230.
[75]  Lopez-Casado, G.; Covey, P.A.; Bedinger, P.A.; Mueller, L.A.; Thannhauser, T.W.; Zhang, S.; Fei, Z.; Giovannoni, J.J.; Rose, J.K. Enabling proteomic studies with RNA-Seq: The proteome of tomato pollen as a test case. Proteomics 2012, 12, 761–774, doi:10.1002/pmic.201100164.
[76]  Imin, N.; Kerim, T.; Weinman, J.J.; Rolfe, B.G. Characterization of rice anther proteins expressed at the young microspore stage. Proteomics 2001, 1, 1149–1161, doi:10.1002/1615-9861(200109)1:9<1149::AID-PROT1149>3.0.CO;2-R.
[77]  Kerim, T.; Imin, N.; Weinman, J.J.; Rolfe, B.G. Proteome analysis of male gametophyte development in rice anthers. Proteomics 2003, 3, 738–751, doi:10.1002/pmic.200300424.
[78]  Imin, N.; Kerim, T.; Weinman, J.J.; Rolfe, B.G. Effect of early cold stress on the maturation of rice anthers. Proteomics 2004, 4, 1873–1882, doi:10.1002/pmic.200300738.
[79]  Imin, N.; Kerim, T.; Weinman, J.J.; Rolfe, B.G. Low temperature treatment at the young microspore stage induces protein changes in rice anthers. Mol. Cell Proteomics 2006, 5, 274–292.
[80]  Gorman, S.W.; McCormick, S. Male sterility in tomato. Crit. Rev. Plant Sci. 1997, 16, 31–53.
[81]  Emmanuel, E.; Levy, A.A. Tomato mutants as tools for functional genomics. Curr. Opin. Plant Biol. 2002, 5, 112–117, doi:10.1016/S1369-5266(02)00237-6.
[82]  Moffatt, B.; Somerville, C. Positive selection for male-sterile mutants of Arabidopsis lacking adenine phosphoribosyl transferase activity. Plant Physiol. 1988, 86, 1150–1154, doi:10.1104/pp.86.4.1150.
[83]  Bhadula, S.K.; Sawhney, V.K. Amylolytic activity and carbohydrate levels during the stamen ontogeny of a male fertile, and a “Gibberellin-Sensitive” male sterile mutant of Tomato (Lycopersicon esculentum). J. Exp. Bot. 1989, 40, 789–794, doi:10.1093/jxb/40.7.789.
[84]  Bhadula, S.K.; Sawhney, V.K. Esterase activity and isozymes during the ontogeny of stamens of male fertile Lycopersicon esculentum Mill., a male sterile stamenless-2 mutant and the low temperature-reverted mutant. Plant Sci. 1987, 52, 187–194, doi:10.1016/0168-9452(87)90052-5.
[85]  Sawhney, V.K. Photoperiod-sensitive male-sterile mutant in tomato and its potential use in hybrid seed production. J. Hortic. Sci. Biotechnol. 2004, 79, 138–141.
[86]  Sheoran, I.S.; Ross, A.R.; Olson, D.J.; Sawhney, V.K. Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum): A proteomic analysis. J. Proteomics 2009, 71, 624–636, doi:10.1016/j.jprot.2008.10.006.
[87]  agadish, S.V.; Muthurajan, R.; Oane, R.; Wheeler, T.R.; Heuer, S.; Bennett, J.; Craufurd, P.Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J. Exp. Bot. 2010, 61, 143–156, doi:10.1093/jxb/erp289.
[88]  Goetz, M.; Godt, D.E.; Guivarc’h, A.; Kahmann, U.; Chriqui, D.; Roitsch, T. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc. Natl. Acad. Sci. USA 2001, 98, 6522–6527.
[89]  Polowick, P.L.; Sawhney, V.K. An ultrastructural study of pollen development in tomato (Lycopersicon esculentum). Can. J. Bot. 1993, 71, 1048–1055, doi:10.1139/b93-121.
[90]  Datta, R.; Chamusco, K.C.; Chourey, P.S. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol. 2002, 130, 1645–1656, doi:10.1104/pp.006908.
[91]  Oliver, S.N.; van Dongen, J.T.; Alfred, S.C.; Mamun, E.A.; Zhao, X.C.; Saini, H.S.; Fernandes, S.F.; Blanchard, C.L.; Sutton, B.G.; Geigenberger, P.; et al. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ. 2005, 28, 1534–1551, doi:10.1111/j.1365-3040.2005.01390.x.
[92]  Pressman, E.; Peet, M.M.; Pharr, D.M. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in developing anthers. Ann. Bot. 2002, 90, 631–636, doi:10.1093/aob/mcf240.
[93]  Sato, S.; Kamiyama, M.; Iwata, T.; Makita, N.; Furukawa, H.; Ikeda, H. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann. Bot. 2006, 97, 731–738, doi:10.1093/aob/mcl037.
[94]  Firon, N.; Shaked, R.; Peet, M.M.; Phari, D.M.; Zamsk?, E.; Rosenfeld, K.; Althan, L.; Pressman, N.E. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci. Hortic. 2006, 109, 212–217, doi:10.1016/j.scienta.2006.03.007.
[95]  Zanor, M.I.; Osorio, S.; Nunes-Nesi, A.; Carrari, F.; Lohse, M.; Usadel, B.; Kühn, C.; Bleiss, W.; Giavalisco, P.; Willmitzer, L.; et al. RNA interference of LIN5 in Solanum lycopersicum confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol. 2009, 150, 1204–1218, doi:10.1104/pp.109.136598.
[96]  Chiang, H.H.; Dandekar, A.M. Regulation of proline accumulation in Arabidopsis during development and in response to dessication. Plant Cell Environ. 1995, 18, 1280–1290.
[97]  Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060, doi:10.1016/0031-9422(89)80182-7.
[98]  Mansour, M. Protection of plasma membrane of onion epidermal cells by glycine betaine and proline against NaCl stress. Plant Physiol. Biochem. 1998, 36, 767–772, doi:10.1016/S0981-9428(98)80028-4.
[99]  Hong-qu, Z.; Croes, A.F. Proline metabolism in pollen: Degradation of proline during germination and early tube growth. Planta 1983, 159, 46–49, doi:10.1007/BF00998813.
[100]  Mattioli, R.; Biancucci, M.; Lonoce, C.; Costantino, P.; Trovato, M. Proline is required for male gametophyte development in Arabidopsis. BMC Plant Biol. 2012, 12, 236, doi:10.1186/1471-2229-12-236.
[101]  Song, J.; Nada, K.; Tachibana, S. Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibitionof pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.). Plant Cell Physiol. 2002, 43, 619–627, doi:10.1093/pcp/pcf078.
[102]  Sinha, R.; Rajam, M.V. RNAi silencing of three homologues of S-adenosylmethionine decarboxylase gene in tapetal tissue of tomato results in male sterility. Plant Mol. Biol. 2013, 82, 169–180, doi:10.1007/s11103-013-0051-2.
[103]  Satake, T.; Yoshida, S. High temperature induced sterility in indica rices at flowering. Jpn. J. Crop Sci. 1978, 47, 6–17, doi:10.1626/jcs.47.6.
[104]  Warrag, M.A.O.; Hall, A.E. Reproductive responses of cowpea to heat stress: Genotypic differences in tolerance to heat at flowering. Crop Sci. 1983, 23, 1088–1092, doi:10.2135/cropsci1983.0011183X002300060016x.
[105]  Ope?a, R.T.; Chen, J.T.; Kuo, C.G.; Chen, H.M. Genetic and Physiological Aspects of Tropical Adaptation in Tomato. In Adaptation of Food Crops to Temperature and Water Stress; Asian Vegetable Research and Development Center: Shanhua, Taiwan, 1992; pp. 257–270.
[106]  Cao, Y.Y.; Duan, H.; Yang, L.-N.; Wang, Z.Q.; Zhou, S.-C.; Yang, J.C. Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agron. Sin. 2008, 34, 2134–2142, doi:10.1016/S1875-2780(09)60022-5.
[107]  Ismail, A.M.; Hall, A.E. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 1999, 39, 1762–1768, doi:10.2135/cropsci1999.3961762x.
[108]  Cao, L.; Zhao, J.; Zhan, X.; Li, D.; He, L.; Cheng, S. Mapping QTLs for heat tolerance and correlation between heat tolerance and photosynthetic rate in rice. Chin. J Rice Sci. 2003, 17, 223–227.
[109]  Lucas, M.R.; Ehlers, J.D.; Huynh, B.L.; Diop, N.N.; Roberts, P.A.; Close, T.J. Markers for breeding heat-tolerant cowpea. Mol. Breeding 2013, 31, 529–536, doi:10.1007/s11032-012-9810-z.
[110]  Ye, C.R.; Argayoso, M.A.; Redona, E.D.; Sierra, S.N.; Laza, M.A.; Dilla, C.J.; Mo, Y.; Thomson, M.J.; Chin, J.; Delavina, C.B.; et al. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed. 2012, 131, 33–41.
[111]  Lin, K.-H.; Yeh, W.L.; Chen, H.M.; Lo, H.F. Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature condition. Eufytica 2010, 174, 119–135.
[112]  Grilli, G.V.G.; Braz, L.T.; Lemos, E.G.M. QTL identification for tolerance to fruit set in tomato by AFLP markers. Crop Breed. Appl. Biotechnol. 2007, 7, 234–241.
[113]  Marfo, K.O.; Hall, A.E. Inheritance of heat tolerance during pod set in cowpea. Crop Sci. 1992, 32, 912–918, doi:10.2135/cropsci1992.0011183X003200040015x.
[114]  Grover, A.; Mittal, D.; Negi, M.; Lavania, D. Generating high temperature tolerant transgenic plants: Achievements and challenges. Plant Sci. 2013, 205–206, 38–47, doi:10.1016/j.plantsci.2013.01.005.
[115]  Dickson, M.H. Breeding for Heat Tolerance in Green Beans and Broccoli. In Adaptation of Food Crops to Temperature and Water Stress; Kuo, C.G., Ed.; Asian Vegetable Research and Development Center: Shanhua, Taiwan, 1992; pp. 296–302.
[116]  Ehlers, J.D.; Hall, A.E.; Patel, P.N.; Roberts, P.A.; Matthews, W.C. Registration of “California Blackeye 27” cowpea. Crop Sci. 2000, 40, 854–855.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133