The Arabidopsis Plant Intracellular Ras-group LRR (PIRL) Family and the Value of Reverse Genetic Analysis for Identifying Genes that Function in Gametophyte Development
Arabidopsis thaliana has proven a powerful system for developmental genetics, but identification of gametophytic genes with developmental mutants can be complicated by factors such as gametophyte-lethality, functional redundancy, or poor penetrance. These issues are exemplified by the Plant Intracellular Ras-group LRR ( PIRL) genes, a family of nine genes encoding a class of leucine-rich repeat proteins structurally related to animal and fungal LRR proteins involved in developmental signaling. Previous analysis of T-DNA insertion mutants showed that two of these genes, PIRL1 and PIRL9, have an essential function in pollen formation but are functionally redundant. Here, we present evidence implicating three more PIRLs in gametophyte development. Scanning electron microscopy revealed that disruption of either PIRL2 or PIRL3 results in a low frequency of pollen morphological abnormalities. In addition, molecular analysis of putative pirl6 insertion mutants indicated that knockout alleles of this gene are not represented in current Arabidopsis mutant populations, suggesting gametophyte lethality may hinder mutant recovery. Consistent with this, available microarray and RNA-seq data have documented strongest PIRL6 expression in developing pollen. Taken together, these results now implicate five PIRLs in gametophyte development. Systematic reverse genetic analysis of this novel LRR family has therefore identified gametophytically active genes that otherwise would likely be missed by forward genetic screens.
References
[1]
McCormick, S. Control of male gametophyte development. Plant Cell 2004, 16, S142–S153, doi:10.1105/tpc.016659.
Johnson-Brousseau, S.A.; McCormick, S. A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically-expressed genes. Plant J. 2004, 39, 761–775, doi:10.1111/j.1365-313X.2004.02147.x.
Bolle, C.; Schneider, A.; Leister, D. Perspectives on systematic analyses of gene function in Arabidopsis thaliana: New tools, topics and trends. Curr. Genomics 2011, 12, 1–14, doi:10.2174/138920211794520187.
[6]
Feldmann, K.A.; Coury, D.A.; Christianson, M.L. Exceptional segregation of a selectable marker (kanr) in Arabidopsis identifies genes important for gametophytic growth and development. Genetics 1997, 147, 1411–1422.
[7]
Howden, R.; Park, S.K.; Moore, J.M.; Orme, J.; Grossniklaus, U.; Twell, D. Selection of t-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 1998, 149, 621–631.
[8]
Christensen, C.A.; Subramanian, S.; Drews, G.N. Identification of gametophytic mutations affecting female gametophyte development in arabidopsis. Dev. Biol. 1998, 202, 136–151, doi:10.1006/dbio.1998.8980.
[9]
Procissi, A.; de Laissardiere, S.; Ferault, M.; Vezon, D.; Pelletier, G.; Bonhomme, S. Five gametophytic mutations affecting pollen development and pollen tube growth in Arabidopsis thaliana. Genetics 2001, 158, 1773–1783.
Pagnussat, G.C.; Yu, H.J.; Ngo, Q.A.; Rajani, S.; Mayalagu, S.; Johnson, C.S.; Capron, A.; Xie, L.F.; Ye, D.; Sundaresan, V. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 2005, 132, 603–614, doi:10.1242/dev.01595.
[12]
Boavida, L.C.; Shuai, B.; Yu, H.J.; Pagnussat, G.C.; Sundaresan, V.; McCormick, S. A collection of Ds insertional mutants associated with defects in male gametophyte development and function in Arabidopsis thaliana. Genetics 2009, 181, 1369–1385, doi:10.1534/genetics.108.090852.
[13]
Lalanne, E.; Twell, D. Genetic control of male germ unit organization in Arabidopsis. Plant Physiol. 2002, 129, 865–875, doi:10.1104/pp.003301.
[14]
Durbarry, A.; Vizir, I.; Twell, D. Male germ line development in Arabidopsis. Duo pollen mutants reveal gametophytic regulators of generative cell cycle progression. Plant Physiol. 2005, 137, 297–307, doi:10.1104/pp.104.053165.
[15]
Muralla, R.; Lloyd, J.; Meinke, D. Molecular foundations of reproductive lethality in Arabidopsis thaliana. PLoS One 2011, 6, e28398, doi:10.1371/journal.pone.0028398.
[16]
Pina, C.; Pinto, F.; Feijo, J.A.; Becker, J.D. Gene family analysis of the arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 2005, 138, 744–756, doi:10.1104/pp.104.057935.
[17]
Honys, D.; Twell, D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004, 5, R85, doi:10.1186/gb-2004-5-11-r85.
[18]
Qin, Y.; Leydon, A.R.; Manziello, A.; Pandey, R.; Mount, D.; Denic, S.; Vasic, B.; Johnson, M.A.; Palanivelu, R. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet. 2009, 5, e1000621, doi:10.1371/journal.pgen.1000621.
[19]
Loraine, A.; McCormick, S.; Estrada, A.; Patel, K.; Qin, P. High-throughput sequencing of Arabidopsis thaliana pollen cdna uncovers novel transcription and alternative splicing. Plant Physiol. 2013, doi:10.1104/pp.112.211441.
Cutler, S.; McCourt, P. Dude, where’s my phenotype? Dealing with redundancy in signaling networks. Plant Physiol. 2005, 138, 558–559, doi:10.1104/pp.104.900152.
[22]
Lloyd, J.; Meinke, D. A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis. Plant Physiol. 2012, 158, 1115–1129, doi:10.1104/pp.111.192393.
[23]
Berg, M.; Rogers, R.; Muralla, R.; Meinke, D. Requirement of aminoacyl-tRNA synthetases for gametogenesis and embryo development in Arabidopsis. Plant J. 2005, 44, 866–878, doi:10.1111/j.1365-313X.2005.02580.x.
[24]
Bonhomme, S.; Horlow, C.; Vezon, D.; de Laissardiere, S.; Guyon, A.; Ferault, M.; Marchand, M.; Bechtold, N.; Pelletier, G. T-DNA mediated disruption of essential gametophytic genes in Arabidopsis is unexpectedly rare and cannot be inferred from segregation distortion alone. Mol. Gen. Genet. 1998, 260, 444–452, doi:10.1007/s004380050915.
[25]
O’Malley, R.C.; Ecker, J.R. Linking genotype to phenotype using the arabidopsis unimutant collection. Plant J. 2010, 61, 928–940, doi:10.1111/j.1365-313X.2010.04119.x.
[26]
Forsthoefel, N.R.; Cutler, K.; Port, M.D.; Yamamoto, T.; Vernon, D.M. Pirls: A novel class of plant intracellular leucine rich repeat proteins. Plant Cell Physiol. 2005, 46, 913–922, doi:10.1093/pcp/pci097.
Nodine, M.D.; Bryan, A.C.; Racolta, A.; Jerosky, K.V.; Tax, F.E. A few standing for many: Embryo receptor-like kinases. Trends Plant Sci. 2011, 16, 211–217, doi:10.1016/j.tplants.2011.01.005.
[29]
Morillo, S.A.; Tax, F.E. Functional analysis of receptor-like kinases in monocots and dicots. Curr. Opin. Plant Biol. 2006, 9, 460–469, doi:10.1016/j.pbi.2006.07.009.
[30]
De Smet, I.; Voss, U.; Jürgens, G.; Beeckman, T. Receptor-like kinases shape the plant. Nat. Cell Biol. 2009, 11, 1166–1173, doi:10.1038/ncb1009-1166.
[31]
Forsthoefel, N.R.; Dao, T.P.; Vernon, D.M. PIRL1 and PIRL9, encoding members of a novel family of plant leucine-rich repeat proteins, are essential for differentiation of microspores into pollen. Planta 2010, 232, 1101–1114, doi:10.1007/s00425-010-1242-6.
[32]
Forsthoefel, N.R.; Vernon, D.M. Effect of sporophytic PIRL9 genotype on post-meiotic expression of the Arabidopsis pirl1;pirl9 mutant pollen phenotype. Planta 2011, 233, 423–431, doi:10.1007/s00425-010-1324-5.
[33]
You, C.; Dai, X.; Li, X.; Wang, L.; Chen, G.; Xiao, J.; Wu, C. Molecular characterization, expression pattern, and functional analysis of the osirl gene family encoding intracellular ras-group-related LRR proteins in rice. Plant Mol. Biol. 2010, 74, 617–629, doi:10.1007/s11103-010-9704-6.
[34]
Sussman, M.R.; Amasino, R.M.; Young, J.C.; Krysan, P.J.; Austin-Phillips, S. The Arabidopsis knockout facility at the University of Wisconsin-Madison. Plant Physiol. 2000, 124, 1465–1467, doi:10.1104/pp.124.4.1465.
Woody, S.T.; Austin-Phillips, S.; Amasino, R.M.; Krysan, P.J. The wiscdslox t-DNA collection: An Arabidopsis community resource generated by using an improved high-throughput t-DNA sequencing pipeline. J. Plant Res. 2007, 120, 157–165, doi:10.1007/s10265-006-0048-x.
[38]
Rhee, S.Y.; Beavis, W.; Berardini, T.Z.; Chen, G.; Dixon, D.; Doyle, A.; Garcia-Hernandez, M.; Huala, E.; Lander, G.; Montoya, M.; et al. The Arabidopsis information resource (TAIR): A model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res. 2003, 31, 224–228, doi:10.1093/nar/gkg076.
[39]
The Arabidopsis information resource. Available online: http://www.arabidopsis.org (accessed on 10 December 2012).
[40]
Winter, D.; Vinegar, B.; Nahal, H.; Ammar, R.; Wilson, G.V.; Provart, N.J. An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2007, 2, e718, doi:10.1371/journal.pone.0000718.
[41]
The Arabidopsis eFP browser. Available online: http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi/ (accessed on 1 March 2013).
[42]
Reddy, J.T.; Dudareva, N.; Evrard, J.-L.; Krauter, R.; Steinmetz, A.; Pillay, D.T.N. A pollen-specificgene from sunflower encodes a member of the leucine-rich-repeat protein superfamily. Plant Sci. 1995, 111, 81–93, doi:10.1016/0168-9452(95)04233-K.
[43]
Clark, K.A.; Krysan, P.J. Chromosomal translocations are a common phenomenon in Arabidopsis thaliana t-DNA insertion lines. Plant J. 2010, 64, 990–1001, doi:10.1111/j.1365-313X.2010.04386.x.
[44]
Tax, F.E.; Vernon, D.M. T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol. 2001, 126, 1527–1538, doi:10.1104/pp.126.4.1527.
[45]
Zimmermann, P.; Hirsch-Hoffmann, M.; Hennig, L.; Gruissem, W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004, 136, 2621–2632, doi:10.1104/pp.104.046367.
[46]
Genevestigator. Available online: https://www.genevestigator.com/gv/plant.jsp/ (accessed on 3 March 2013).
[47]
Schmid, M.; Davison, T.S.; Henz, S.R.; Pape, U.J.; Demar, M.; Vingron, M.; Scholkopf, B.; Weigel, D.; Lohmann, J.U. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 2005, 37, 501–506, doi:10.1038/ng1543.
[48]
Mandaokar, A.; Thines, B.; Shin, B.; Lange, B.M.; Choi, G.; Koo, Y.J.; Yoo, Y.J.; Choi, Y.D.; Choi, G.; Browse, J. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J. 2006, 46, 984–1008, doi:10.1111/j.1365-313X.2006.02756.x.
[49]
Boavida, L.C.; Borges, F.; Becker, J.D.; Feijo, J.A. Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis. Plant Physiol. 2011, 155, 2066–2080, doi:10.1104/pp.110.169813.