全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Plants  2013 

Identification of CP12 as a Novel Calcium-Binding Protein in Chloroplasts

DOI: 10.3390/plants2030530

Keywords: chloroplast, calcium signaling, CP12, Calvin-Benson-Bassham Cycle

Full-Text   Cite this paper   Add to My Lib

Abstract:

Calcium plays an important role in the regulation of several chloroplast processes. However, very little is still understood about the calcium fluxes or calcium-binding proteins present in plastids. Indeed, classical EF-hand containing calcium-binding proteins appears to be mostly absent from plastids. In the present study we analyzed the stroma fraction of Arabidopsis chloroplasts for the presence of novel calcium-binding proteins using 2D-PAGE separation followed by calcium overlay assay. A small acidic protein was identified by mass spectrometry analyses as the chloroplast protein CP12 and the ability of CP12 to bind calcium was confirmed with recombinant proteins. CP12 plays an important role in the regulation of the Calvin-Benson-Bassham Cycle participating in the assembly of a supramolecular complex between phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase, indicating that calcium signaling could play a role in regulating carbon fixation.

References

[1]  Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21, doi:10.1038/35036035.
[2]  Clapham, D.E. Calcium signaling. Cell 2007, 131, 1047–1058, doi:10.1016/j.cell.2007.11.028.
[3]  Rocha, A.G.; Vothknecht, U.C. The role of calcium in chloroplasts—An intriguing and unresolved puzzle. Protoplasma 2012, 249, 957–966, doi:10.1007/s00709-011-0373-3.
[4]  Heredia, P.; de Las Rivas, J. Calcium-dependent conformational change and thermal stability of the isolated PsbO protein detected by FTIR Spectroscopy. Biochemistry 2003, 42, 11831–11838, doi:10.1021/bi034582j.
[5]  Kruk, J.; Burda, K.; Jemiola-Rzeminska, M.; Strzalka, K. The 33 kDa protein of photosystem II is a low-affinity calcium- and lanthanide-binding protein. Biochemistry 2003, 42, 14862–14867, doi:10.1021/bi0351413.
[6]  Shutova, T.; Nikitina, J.; Deikus, G.; Andersson, B.; Klimov, V.; Samuelsson, G. Structural dynamics of the manganese-stabilizing protein-effect of pH, calcium, and manganese. Biochemistry 2005, 44, 15182–15192.
[7]  Surek, B.; Kreimer, G.; Melkonian, M.; Latzko, E. Spinach ferredoxin is a calcium-binding protein. Planta 1987, 171, 565–568, doi:10.1007/BF00392307.
[8]  Han, S.C.; Tang, R.H.; Anderson, L.K.; Woerner, T.E.; Pei, Z.M. A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 2003, 425, 196–200, doi:10.1038/nature01932.
[9]  Nomura, H.; Komori, T.; Kobori, M.; Nakahira, Y.; Shiina, T. Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J. 2008, 53, 988–998.
[10]  Tang, R.H.; Han, S.C.; Zheng, H.L.; Cook, C.W.; Choi, C.S.; Woerner, T.E.; Jackson, R.B.; Pei, Z.M. Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis. Science 2007, 315, 1423–1426, doi:10.1126/science.1134457.
[11]  Weinl, S.; Held, K.; Schlucking, K.; Steinhorst, L.; Kuhlgert, S.; Hippler, M.; Kudla, J. A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol. 2008, 179, 675–686, doi:10.1111/j.1469-8137.2008.02492.x.
[12]  Vainonen, J.P.; Sakuragi, Y.; Stael, S.; Tikkanen, M.; Allahverdiyeva, Y.; Paakkarinen, V.; Aro, E.; Suorsa, M.; Scheller, H.V.; Vener, A.V.; et al. Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana. FEBS J. 2008, 275, 1767–1777, doi:10.1111/j.1742-4658.2008.06335.x.
[13]  Stael, S.; Rocha, A.G.; Wimberger, T.; Anrather, D.; Vothknecht, U.C.; Teige, M. Cross-talk between calcium signalling and protein phosphorylation at the thylakoid. J. Exp. Bot. 2012, 63, 1725–1733, doi:10.1093/jxb/err403.
[14]  Nakayama, S.; Kretsinger, R.H. Evolution of the EF-hand family of proteins. Ann. Rev. Biophys. Biomol. Struct. 1994, 23, 473–507, doi:10.1146/annurev.bb.23.060194.002353.
[15]  Reddy, V.S.; Ali, G.S.; Reddy, A.S.N. Genes encoding calmodulin-binding proteins in the arabidopsis genome. J. Biol. Chem. 2002, 277, 9840–9852, doi:10.1074/jbc.M111626200.
[16]  Yang, T.; Poovaiah, B.W. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein. Biochem. Biophys. Res. Commun. 2000, 275, 601–607, doi:10.1006/bbrc.2000.3335.
[17]  Buaboocha, T.; Liao, B.; Zielinski, R.E. Isolation of cDNA and genomic DNA clones encoding a calmodulin-binding protein related to a family of ATPases involved in cell division and vesicle fusion. Planta 2001, 212, 774–781, doi:10.1007/s004250000440.
[18]  Bussemer, J.; Chigri, F.; Vothknecht, U.C. Arabidopsis ATPase family gene 1-like protein 1 is a calmodulin-binding AAA+-ATPase with a dual localization in chloroplasts and mitochondria. FEBS J. 2009, 276, 3870–3880, doi:10.1111/j.1742-4658.2009.07102.x.
[19]  Bayer, R.G.; Stael, S.; Csaszar, E.; Teige, M. Mining the soluble chloroplast proteome by affinity chromatography. Proteomics 2011, 11, 1287–1299, doi:10.1002/pmic.201000495.
[20]  Ferro, M.; Salvi, D.; Brugiere, S.; Miras, S.; Kowalski, S.; Louwagie, M.; Garin, J.; Joyard, J.; Rolland, N. Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol. Cell. Proteomics 2003, 2, 325–345.
[21]  Stael, S.; Rocha, A.G.; Robinson, A.J.; Kmiecik, P.; Vothknecht, U.C.; Teige, M. Arabidopsis calcium-binding mitochondrial carrier proteins as potential facilitators of mitochondrial ATP-import and plastid SAM-import. FEBS Lett. 2011, 585, 3935–3940, doi:10.1016/j.febslet.2011.10.039.
[22]  Tozawa, Y.; Nozawa, A.; Kanno, T.; Narisawa, T.; Masuda, S.; Kasai, K.; Nanamiya, H. Calcium-activated (p)ppGpp synthetase in chloroplasts of land plants. J. Biol. Chem. 2007, 282, 35536–35545, doi:10.1074/jbc.M703820200.
[23]  Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552.
[24]  Emanuelsson, O.; Nielsen, H.; von Heijne, G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999, 8, 978–984, doi:10.1110/ps.8.5.978.
[25]  Seigneurin-Berny, D.; Salvi, D.; Dorne, A.J.; Joyard, J.; Rolland, N. Percoll-purified and photosynthetically active chloroplasts from Arabidopsis thaliana leaves. Plant Physiol. Biochem. 2008, 46, 951–955, doi:10.1016/j.plaphy.2008.06.009.
[26]  Maruyama, K.; Mikawa, T.; Ebashi, S. Detection of calcium-binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl-sulfate gel-electrophoresis. J. Biochem. 1984, 95, 511–519.
[27]  Wedel, N.; Soll, J.; Paap, B.K. CP12 provides a new mode of light regulation of Calvin cycle activity in higher plants. Proc. Natl. Acad. Sci. USA 1997, 94, 10479–10484, doi:10.1073/pnas.94.19.10479.
[28]  Wedel, N.; Soll, J. Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proc. Natl. Acad. Sci. USA 1998, 95, 9699–9704, doi:10.1073/pnas.95.16.9699.
[29]  Lebreton, S.; Graciet, E.; Gontero, B. Modulation, via protein-protein interactions, of glyceraldehyde-3-phosphate dehydrogenase activity through redox phosphoribulokinase regulation. J. Biol. Chem. 2003, 278, 12078–12084, doi:10.1074/jbc.M213096200.
[30]  Nicholson, S.; Easterby, J.S.; Powls, R. Properties of a multimeric protein complex from chloroplasts possessing potential activities of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase. Eur. J. Biochem. 1987, 162, 423–431, doi:10.1111/j.1432-1033.1987.tb10619.x.
[31]  Obrien, M.J.; Easterby, J.S.; Powls, R. Algal glyceraldehyde-3-phosphate dehydrogenases conversion of NADH-linked enzyme of scenedesmus-obliquus into a form which preferentially uses NADPH as coenzyme. Biochim. Biophys. Acta 1976, 449, 209–223, doi:10.1016/0005-2728(76)90134-1.
[32]  Boggetto, N.; Gontero, B.; Maberly, S.C. Regulation of phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase in a freshwater diatom, Asterionella formosa. J. Phycol. 2007, 43, 1227–1235, doi:10.1111/j.1529-8817.2007.00409.x.
[33]  Erales, J.; Gontero, B.; Maberly, S.C. Specificity and function of glyceraldehyde-3-phosphate dehydrogenase in a freshwater diatom, Asterionella formosa (Bacillariophyceae). J. Phycol. 2008, 44, 1455–1464, doi:10.1111/j.1529-8817.2008.00600.x.
[34]  Marri, L.; Zaffagnini, M.; Collin, V.; Issakidis-Bourguet, E.; Lemaire, S.D.; Pupillo, P.; Sparla, F.; Miginiac-Maslow, M.; Trost, P. Prompt and easy activation by specific thioredoxins of Calvin cycle enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular complex. Mol. Plant 2009, 2, 259–269.
[35]  Graciet, E.; Lebreton, S.; Camadro, J.-M.; Gontero, B. Characterization of native and recombinant A4 glyceraldehyde 3-phosphate dehydrogenase. Eur. J. Biochem. 2003, 270, 129–136.
[36]  Howard, T.P.; Fryer, M.J.; Singh, P.; Metodiev, M.; Lytovchenko, A.; Obata, T.; Fernie, A.R.; Kruger, N.J.; Quick, W.P.; Lloyd, J.C.; et al. Antisense suppression of the small chloroplast protein CP12 in tobacco alters carbon partitioning and severely restricts growth. Plant Physiol. 2011, 157, 620–631, doi:10.1104/pp.111.183806.
[37]  Tamoi, M.; Miyazaki, T.; Fukamizo, T.; Shigeoka, S. The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J. 2005, 42, 504–513, doi:10.1111/j.1365-313X.2005.02391.x.
[38]  Turner, W.L.; Waller, J.C.; Vanderbeld, B.; Snedden, W.A. Cloning and characterization of two NAD kinases from Arabidopsis. Identification of a calmodulin binding isoform. Plant Physiol. 2004, 135, 1243–1255, doi:10.1104/pp.104.040428.
[39]  Chardot, T.; Meunier, J.-C. Fructose-1,6-bisphosphate and calcium activate oxidized spinach (Spinacia oleracea) chloroplast fructose-1,6-bisphosphatase. Plant Sci. 1990, 70, 1–9, doi:10.1016/0168-9452(90)90025-J.
[40]  Cadet, F.; Meunier, J.C. Spinach (Spinacia oleracea) chloroplast sedoheptulose-1,7-bisphosphatase. activation and deactivation, and immunological relationship to fructose-1,6-bisphosphatase. Biochem. J. 1988, 253, 243–248.
[41]  Charles, S.A.; Halliwell, B. Action of calcium-ions on spinach (Spinacia-Oleracea) chloroplast fructose bisphosphatase and other enzymes of the Calvin cycle. Biochem. J. 1980, 188, 775–779.
[42]  Portis, A.R., Jr.; Heldt, H.W. Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim. Biophys. Acta Bioenerg. 1976, 449, 434–446, doi:10.1016/0005-2728(76)90154-7.
[43]  Wolosiuk, R.A.; Hertig, C.M.; Nishizawa, A.N.; Buchanan, B.B. Enzyme regulation in C4 photosynthesis. Role of Ca2+ in thioredoxin-linked activation of sedoheptulose bisphosphatase from corn leaves. FEBS Lett. 1982, 140, 31–35, doi:10.1016/0014-5793(82)80514-0.
[44]  Sai, J.; Johnson, C.H. Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 2002, 14, 1279–1291, doi:10.1105/tpc.000653.
[45]  Ettinger, W.F.; Clear, A.M.; Fanning, K.J.; Peck, M.L. Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane. Plant Physiol. 1999, 119, 1379–1386, doi:10.1104/pp.119.4.1379.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133