全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Plants  2013 

The Leaf Adaxial-Abaxial Boundary and Lamina Growth

DOI: 10.3390/plants2020174

Keywords: leaf development, the adaxial-abaxial boundary, lamina growth, leaf margin, auxin, the WOX family transcription factor

Full-Text   Cite this paper   Add to My Lib

Abstract:

In multicellular organisms, boundaries have a role in preventing the intermingling of two different cell populations and in organizing the morphogenesis of organs and the entire organism. Plant leaves have two different cell populations, the adaxial (or upper) and abaxial (or lower) cell populations, and the boundary is considered to be important for lamina growth. At the boundary between the adaxial and abaxial epidermis, corresponding to the margin, margin-specific structures are developed and structurally separate the adaxial and abaxial epidermis from each other. The adaxial and abaxial cells are determined by the adaxial and abaxial regulatory genes (including transcription factors and small RNAs), respectively. Among many lamina-growth regulators identified by recent genetic analyses, it has been revealed that the phytohormone, auxin, and the WOX family transcription factors act at the adaxial-abaxial boundary downstream of the adaxial-abaxial pattern. Furthermore, mutant analyses of the WOX genes shed light on the role of the adaxial-abaxial boundary in preventing the mixing of the adaxial and abaxial features during lamina growth. In this review, we highlight the recent studies on the dual role of the adaxial-abaxial boundary.

References

[1]  Blair, S.S. Developmental biology: Boundary lines. Nature 2003, 424, 379–381, doi:10.1038/424379a.
[2]  Dahmann, C.; Basler, K. Compartment boundaries: At the edge of development. Trends Genet. 1999, 15, 320–326, doi:10.1016/S0168-9525(99)01774-6.
[3]  Dahmann, C.; Oates, A.C.; Brand, M. Boundary formation and maintenance in tissue development. Nat. Rev. Genet. 2011, 12, 43–55, doi:10.1038/nrg2902.
[4]  Irvine, K.D. Fringe, Notch, and making developmental boundaries. Curr. Opin. Genet. Dev. 1999, 9, 434–441, doi:10.1016/S0959-437X(99)80066-5.
[5]  Irvine, K.D.; Rauskolb, C. Boundaries in development: Formation and function. Annu. Rev. Cell. Dev. Biol. 2001, 17, 189–214, doi:10.1146/annurev.cellbio.17.1.189.
[6]  Kicheva, A.; Pantazis, P.; Bollenbach, T.; Kalaidzidis, Y.; Bittig, T.; Julicher, F.; Gonzalez-Gaitan, M. Kinetics of morphogen gradient formation. Science 2007, 315, 521–525, doi:10.1126/science.1135774.
[7]  Klein, T. Wing disc development in the fly: The early stages. Curr. Opin. Genet. Dev. 2001, 11, 470–475, doi:10.1016/S0959-437X(00)00219-7.
[8]  Wartlick, O.; Mumcu, P.; Kicheva, A.; Bittig, T.; Seum, C.; Julicher, F.; Gonzalez-Gaitan, M. Dynamics of Dpp signaling and proliferation control. Science 2011, 331, 1154–1159, doi:10.1126/science.1200037.
[9]  Kato, K.; Orii, H.; Watanabe, K.; Agata, K. Dorsal and ventral positional cues required for the onset of planarian regeneration may reside in differentiated cells. Dev. Biol. 2001, 233, 109–121, doi:10.1006/dbio.2001.0226.
[10]  Major, R.J.; Irvine, K.D. Localization and requirement for Myosin II at the dorsal-ventral compartment boundary of the Drosophila wing. Dev. Dyn. 2006, 235, 3051–3058, doi:10.1002/dvdy.20966.
[11]  Landsberg, K.P.; Farhadifar, R.; Ranft, J.; Umetsu, D.; Widmann, T.J.; Bittig, T.; Said, A.; Julicher, F.; Dahmann, C. Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Curr. Biol. 2009, 19, 1950–1955, doi:10.1016/j.cub.2009.10.021.
[12]  Canela-Xandri, O.; Sagues, F.; Casademunt, J.; Buceta, J. Dynamics and mechanical stability of the developing dorsoventral organizer of the wing imaginal disc. PLoS Comput. Biol. 2011, 7, e1002153, doi:10.1371/journal.pcbi.1002153.
[13]  Aliee, M.; Roper, J.C.; Landsberg, K.P.; Pentzold, C.; Widmann, T.J.; Julicher, F.; Dahmann, C. Physical mechanisms shaping the Drosophila dorsoventral compartment boundary. Curr. Biol. 2012, 22, 967–976, doi:10.1016/j.cub.2012.03.070.
[14]  Aida, M.; Tasaka, M. Genetic control of shoot organ boundaries. Curr. Opin. Plant Biol. 2006, 9, 72–77, doi:10.1016/j.pbi.2005.11.011.
[15]  Blein, T.; Hasson, A.; Laufs, P. Leaf development: What it needs to be complex. Curr. Opin. Plant Biol. 2010, 13, 75–82, doi:10.1016/j.pbi.2009.09.017.
[16]  Rast, M.I.; Simon, R. The meristem-to-organ boundary: More than an extremity of anything. Curr. Opin. Genet. Dev. 2008, 18, 287–294, doi:10.1016/j.gde.2008.05.005.
[17]  Townsley, B.T.; Sinha, N.R. A new development: Evolving concepts in leaf ontogeny. Annu. Rev. Plant Biol. 2012, 63, 535–562, doi:10.1146/annurev-arplant-042811-105524.
[18]  Bowman, J.L.; Eshed, Y.; Baum, S.F. Establishment of polarity in angiosperm lateral organs. Trends Genet. 2002, 18, 134–141, doi:10.1016/S0168-9525(01)02601-4.
[19]  Chitwood, D.H.; Guo, M.; Nogueira, F.T.S.; Timmermans, M.C.P. Establishing leaf polarity: The role of small RNAs and positional signals in the shoot apex. Development 2007, 134, 813–823, doi:10.1242/dev.000497.
[20]  Husbands, A.Y.; Chitwood, D.H.; Plavskin, Y.; Timmermans, M.C. Signals and prepatterns: New insights into organ polarity in plants. Genes Dev. 2009, 23, 1986–1997, doi:10.1101/gad.1819909.
[21]  Yamaguchi, T.; Nukazuka, A.; Tsukaya, H. Leaf adaxial-abaxial polarity specification and lamina outgrowth: Evolution and development. Plant Cell Physiol. 2012, 53, 1180–1194, doi:10.1093/pcp/pcs074.
[22]  Timmermans, M.; Schultes, N.; Jankovsky, J.; Nelson, T. Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development 1998, 125, 2813–2823.
[23]  Waites, R.; Hudson, A. phantastica: A gene required for dorsoventrality of leaves in Antirrhinum majus. Development 1995, 121, 2143.
[24]  Poethig, R.; Sussex, I. The developmental morphology and growth dynamics of the tobacco leaf. Planta 1985, 165, 158–169, doi:10.1007/BF00395038.
[25]  Mchale, N.; Marcotrigiano, M. LAM1 is required for dorsoventrality and lateral growth of the leaf blade in Nicotiana. Development 1998, 125, 4235.
[26]  Sawa, S.; Watanabe, K.; Goto, K.; Kanaya, E.; Morita, E.; Okada, K. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev. 1999, 13, 1079–1088, doi:10.1101/gad.13.9.1079.
[27]  Zgurski, J.M.; Sharma, R.; Bolokoski, D.A.; Schultz, E.A. Asymmetric auxin response precedes asymmetric growth and differentiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis leaves. Plant Cell 2005, 17, 77–91, doi:10.1105/tpc.104.026898.
[28]  Tadege, M.; Lin, H.; Bedair, M.; Berbel, A.; Wen, J.; Rojas, C.M.; Niu, L.; Tang, Y.; Sumner, L.; Ratet, P.; et al. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris. Plant Cell 2011, 23, 2125–2142, doi:10.1105/tpc.111.085340.
[29]  Bremer, B.; Bremer, K.; Chase, M. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Plant J. 2009, 161, 105–121.
[30]  Kawamura, E.; Horiguchi, G.; Tsukaya, H. Mechanisms of leaf tooth formation in Arabidopsis. Plant J. 2010, 62, 429–441, doi:10.1111/j.1365-313X.2010.04156.x.
[31]  Reinhardt, B.; Nggi, E.H.; Ller, S.M.; Bauch, M.; Wyrzykowska, J.; Kerstetter, R.; Poethig, S.; Fleming, A.J. Restoration of DWF4 expression to the leaf margin of a dwf4 mutant is suf?cient to restore leaf shape but not size: The role of the margin in leaf development. Plant J. 2007, 52, 1094–1104, doi:10.1111/j.1365-313X.2007.03304.x.
[32]  Wang, W.; Xu, B.; Wang, H.; Li, J.; Huang, H.; Xu, L. YUCCA Genes are Expressed in Response to Leaf Adaxial-abaxial Juxtaposition and are Required for Leaf Margin Development. Plant Physiol. 2011, 157, 1805–1819, doi:10.1104/pp.111.186395.
[33]  McConnell, J.; Barton, M. Leaf polarity and meristem formation in Arabidopsis. Development 1998, 125, 2935–2942.
[34]  McConnell, J.R.; Emery, J.; Eshed, Y.; Bao, N.; Bowman, J.; Barton, M.K. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 2001, 411, 709–713, doi:10.1038/35079635.
[35]  Otsuga, D.; DeGuzman, B.; Prigge, M.J.; Drews, G.N.; Clark, S.E. REVOLUTA regulates meristem initiation at lateral positions. Plant J. 2001, 25, 223–236, doi:10.1046/j.1365-313x.2001.00959.x.
[36]  Prigge, M.J.; Otsuga, D.; Alonso, J.M.; Ecker, J.R.; Drews, G.N.; Clark, S.E. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 2005, 17, 61–76, doi:10.1105/tpc.104.026161.
[37]  Iwakawa, H.; Iwasaki, M.; Kojima, S.; Ueno, Y.; Soma, T.; Tanaka, H.; Semiarti, E.; Machida, Y.; Machida, C. Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Plant J. 2007, 51, 173–184, doi:10.1111/j.1365-313X.2007.03132.x.
[38]  Iwakawa, H.; Ueno, Y.; Semiarti, E.; Onouchi, H.; Kojima, S.; Tsukaya, H.; Hasebe, M.; Soma, T.; Ikezaki, M.; Machida, C.; et al. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol. 2002, 43, 467–478, doi:10.1093/pcp/pcf077.
[39]  Lin, W.-C.; Shuai, B.; Springer, P.S. The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. Plant Cell 2003, 15, 2241–2252, doi:10.1105/tpc.014969.
[40]  Xu, L.; Xu, Y.; Dong, A.; Sun, Y.; Pi, L.; Xu, Y.; Huang, H. Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 2003, 130, 4097–4107, doi:10.1242/dev.00622.
[41]  Sarojam, R.; Sappl, P.G.; Goldshmidt, A.; Efroni, I.; Floyd, S.K.; Eshed, Y.; Bowman, J.L. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell 2010, 22, 2113–2130, doi:10.1105/tpc.110.075853.
[42]  Siegfried, K.R.; Eshed, Y.; Baum, S.F.; Otsuga, D.; Drews, G.N.; Bowman, J.L. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 1999, 126, 4117–4128.
[43]  Eshed, Y.; Baum, S.F.; Perea, J.V.; Bowman, J.L. Establishment of polarity in lateral organs of plants. Curr. Biol. 2001, 11, 1251–1260, doi:10.1016/S0960-9822(01)00392-X.
[44]  Eshed, Y.; Izhaki, A.; Baum, S.; Floyd, S.; Bowman, J. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 2004, 131, 2997–3006, doi:10.1242/dev.01186.
[45]  Kerstetter, R.A.; Bollman, K.; Taylor, R.A.; Bomblies, K.; Poethig, R.S. KANADI regulates organ polarity in Arabidopsis. Nature 2001, 411, 706–709, doi:10.1038/35079629.
[46]  Chitwood, D.H.; Nogueira, F.T.S.; Howell, M.D.; Montgomery, T.A.; Carrington, J.C.; Timmermans, M.C.P. Pattern formation via small RNA mobility. Genes Dev. 2009, 23, 549–554, doi:10.1101/gad.1770009.
[47]  Pekker, I.; Alvarez, J.P.; Eshed, Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 2005, 17, 2899–2910, doi:10.1105/tpc.105.034876.
[48]  Waites, R.; Selvadurai, H.R.; Oliver, I.R.; Hudson, A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 1998, 93, 779–789, doi:10.1016/S0092-8674(00)81439-7.
[49]  Izhaki, A.; Bowman, J.L. KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 2007, 19, 495–508, doi:10.1105/tpc.106.047472.
[50]  Emery, J.F.; Floyd, S.K.; Alvarez, J.; Eshed, Y.; Hawker, N.P.; Izhaki, A.; Baum, S.F.; Bowman, J.L. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 2003, 13, 1768–1774.
[51]  Wu, G.; Lin, W.-C.; Huang, T.; Poethig, R.S.; Springer, P.S.; Kerstetter, R.A. KANADI1 regulates adaxial–abaxial polarity in Arabidopsis by directly repressing the transcription of ASYMMETRIC LEAVES2. Proc. Natl. Acad. Sci. USA 2008, 105, 16392–16397.
[52]  Bonaccorso, O.; Lee, J.E.; Puah, L.; Scutt, C.P.; Golz, J.F. FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor. BMC Plant Biol. 2012, 12, 176, doi:10.1186/1471-2229-12-176.
[53]  Kelley, D.R.; Arreola, A.; Gallagher, T.L.; Gasser, C.S. ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development 2012, 139, 1105–1109, doi:10.1242/dev.067918.
[54]  Jun, J.H.; Ha, C.M.; Fletcher, J.C. BLADE-ON-PETIOLE1 coordinates organ determinacy and axial polarity in arabidopsis by directly activating ASYMMETRIC LEAVES2. Plant Cell 2010, 22, 62–76, doi:10.1105/tpc.109.070763.
[55]  Ha, C.M.; Jun, J.H.; Nam, H.G.; Fletcher, J.C. BLADE-ON-PETIOLE 1 and 2 control Arabidopsis lateral organ fate through regulation of LOB domain and adaxial-abaxial polarity genes. Plant Cell 2007, 19, 1809–1825, doi:10.1105/tpc.107.051938.
[56]  Nogueira, F.T.; Madi, S.; Chitwood, D.H.; Juarez, M.T.; Timmermans, M.C. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev. 2007, 21, 750–755, doi:10.1101/gad.1528607.
[57]  Chen, X. Small RNAs and their roles in plant development. Annu. Rev. Cell Dev. Biol. 2009, 25, 21–44, doi:10.1146/annurev.cellbio.042308.113417.
[58]  Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. Cell 2009, 136, 669–687, doi:10.1016/j.cell.2009.01.046.
[59]  Kidner, C.A.; Martienssen, R.A. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 2004, 428, 81–84, doi:10.1038/nature02366.
[60]  Mallory, A.; Reinhart, B.; Jones-Rhoades, M.; Tang, G. MicroRNA control of PHABULOSA in leaf development: Importance of pairing to the microRNA 5' region. EMBO J. 2004, 23, 3356–3364, doi:10.1038/sj.emboj.7600340.
[61]  Adenot, X.; Elmayan, T.; Lauressergues, D.; Boutet, S.; Bouche, N.; Gasciolli, V.; Vaucheret, H. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr. Biol. 2006, 16, 927–932.
[62]  Allen, E.; Xie, Z.; Gustafson, A.M.; Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 2005, 121, 207–221, doi:10.1016/j.cell.2005.04.004.
[63]  Fahlgren, N.; Montgomery, T.A.; Howell, M.D.; Allen, E.; Dvorak, S.K.; Alexander, A.L.; Carrington, J.C. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 2006, 16, 939–944, doi:10.1016/j.cub.2006.03.065.
[64]  Garcia, D.; Collier, S.A.; Byrne, M.E.; Martienssen, R.A. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr. Biol. 2006, 16, 933–938, doi:10.1016/j.cub.2006.03.064.
[65]  Hunter, C.; Willmann, M.R.; Wu, G.; Yoshikawa, M.; de la Luz Gutierrez-Nava, M.; Poethig, S.R. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 2006, 133, 2973–2981, doi:10.1242/dev.02491.
[66]  Lynn, K.; Fernandez, A.; Aida, M.; Sedbrook, J.; Tasaka, M.; Masson, P.; Barton, M.K. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 1999, 126, 469–481.
[67]  Zhu, H.; Hu, F.; Wang, R.; Zhou, X.; Sze, S.H.; Liou, L.W.; Barefoot, A.; Dickman, M.; Zhang, X. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 2011, 145, 242–256, doi:10.1016/j.cell.2011.03.024.
[68]  Brandt, R.; Xie, Y.; Musielak, T.; Graeff, M.; Stierhof, Y.D.; Huang, H.; Liu, C.M.; Wenkel, S. Control of stem cell homeostasis via interlocking microRNA and microProtein feedback loops. Mech. Dev. 2012, 130, 25–33.
[69]  Wenkel, S.; Emery, J.; Hou, B.H.; Evans, M.M.; Barton, M.K. A feedback regulatory module formed by LITTLE ZIPPER and HD-ZIPIII genes. Plant Cell 2007, 19, 3379–3390, doi:10.1105/tpc.107.055772.
[70]  Ueno, Y.; Ishikawa, T.; Watanabe, K.; Terakura, S.; Iwakawa, H.; Okada, K.; Machida, C.; Machida, Y. Histone deacetylases and ASYMMETRIC LEAVES2 are involved in the establishment of polarity in leaves of Arabidopsis. Plant Cell 2007, 19, 445–457, doi:10.1105/tpc.106.042325.
[71]  Pinon, V.; Etchells, J.P.; Rossignol, P.; Collier, S.A.; Arroyo, J.M.; Martienssen, R.A.; Byrne, M.E. Three PIGGYBACK genes that specifically influence leaf patterning encode ribosomal proteins. Development 2008, 135, 1315–1324, doi:10.1242/dev.016469.
[72]  Yao, Y.; Ling, Q.; Wang, H.; Huang, H. Ribosomal proteins promote leaf adaxial identity. Development 2008, 135, 1325–1334, doi:10.1242/dev.017913.
[73]  Yuan, Z.; Luo, D.; Li, G.; Yao, X.; Wang, H.; Zeng, M.; Huang, H.; Cui, X. Characterization of the AE7 gene in Arabidopsis suggests that normal cell proliferation is essential for leaf polarity establishment. Plant J. 2010, 64, 331–342, doi:10.1111/j.1365-313X.2010.04326.x.
[74]  Horiguchi, G.; Molla-Morales, A.; Perez-Perez, J.M.; Kojima, K.; Robles, P.; Ponce, M.R.; Micol, J.L.; Tsukaya, H. Differential contributions of ribosomal protein genes to Arabidopsis thaliana leaf development. Plant J. 2011, 65, 724–736.
[75]  Kojima, S.; Iwasaki, M.; Takahashi, H.; Imai, T.; Matsumura, Y.; Fleury, D.; van Lijsebettens, M.; Machida, Y.; Machida, C. Asymmetric leaves2 and Elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana. Plant Cell Physiol. 2011, 52, 1259–1273, doi:10.1093/pcp/pcr083.
[76]  Szakonyi, D.; Byrne, M.E. Ribosomal protein L27a is required for growth and patterning in Arabidopsis thaliana. Plant J. 2011, 65, 269–281, doi:10.1111/j.1365-313X.2010.04422.x.
[77]  Moschopoulos, A.; Derbyshire, P.; Byrne, M.E. The Arabidopsis organelle-localized glycyl-tRNA synthetase encoded by EMBRYO DEFECTIVE DEVELOPMENT1 is required for organ patterning. J. Exp. Bot. 2012, 63, 5233–5243, doi:10.1093/jxb/ers184.
[78]  Tsukaya, H.; Byrne, M.E.; Horiguchi, G.; Sugiyama, M.; van Lijsebettens, M.; Lenhard, M. How do “housekeeping” genes control organogenesis?—Unexpected new findings on the role of housekeeping genes in cell and organ differentiation. J. Plant Res. 2013, 126, 3–15, doi:10.1007/s10265-012-0518-2.
[79]  Toyokura, K.; Watanabe, K.; Oiwaka, A.; Kusano, M.; Tameshige, T.; Tatematsu, K.; Matsumoto, N.; Tsugeki, R.; Saito, K.; Okada, K. Succinic Semialdehyde Dehydrogenase is Involved in the Robust Patterning of Arabidopsis Leaves along the Adaxial-Abaxial Axis. Plant Cell Physiol. 2011, 52, 1340–1353, doi:10.1093/pcp/pcr079.
[80]  La Rota, C.; Chopard, J.; Das, P.; Paindavoine, S.; Rozier, F.; Farcot, E.; Godin, C.; Traas, J.; Moneger, F. A data-driven integrative model of sepal primordium polarity in Arabidopsis. Plant Cell 2011, 23, 4318–4333, doi:10.1105/tpc.111.092619.
[81]  Steeves, T.A.; Sussex, I.M. Patterns in plant development; Cambridge University Press.: New York, NY, USA, 1989.
[82]  Poethig, R.; Sussex, I.M. The cellular parameters of leaf development in tobacco: A clonal analysis. Planta 1985, 165, 170–184, doi:10.1007/BF00395039.
[83]  Donnelly, P.M.; Bonetta, D.; Tsukaya, H.; Dengler, R.E.; Dengler, N.G. Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev. Biol. 1999, 215, 407–419, doi:10.1006/dbio.1999.9443.
[84]  Dengler, N.G.; Tsukaya, H. Leaf morphogenesis in dicotyledons: Current issues. Int. J. Plant Sci. 2001, 162, 459–464, doi:10.1086/320145.
[85]  Reinhardt, D.; Mandel, T.; Kuhlemeier, C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 2000, 12, 507–518.
[86]  Reinhardt, D.; Wittwer, F.; Mandel, T.; Kuhlemeier, C. Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell 1998, 10, 1427–1437.
[87]  Peaucelle, A.; Louvet, R.; Johansen, J.N.; Hofte, H.; Laufs, P.; Pelloux, J.; Mouille, G. Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr. Biol. 2008, 18, 1943–1948, doi:10.1016/j.cub.2008.10.065.
[88]  Peaucelle, A.; Braybrook, S.A.; Le Guillou, L.; Bron, E.; Kuhlemeier, C.; Hofte, H. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 2011, 21, 1720–1726, doi:10.1016/j.cub.2011.08.057.
[89]  Kierzkowski, D.; Nakayama, N.; Routier-Kierzkowska, A.L.; Weber, A.; Bayer, E.; Schorderet, M.; Reinhardt, D.; Kuhlemeier, C.; Smith, R.S. Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 2012, 335, 1096–1099, doi:10.1126/science.1213100.
[90]  Schnittger, A.; Grini, P.E.; Folkers, U.; Hulskamp, M. Epidermal fate map of the Arabidopsis shoot meristem. Dev. Biol. 1996, 175, 248–255, doi:10.1006/dbio.1996.0112.
[91]  Irish, V.F.; Sussex, I. A fate map of the Arabidopsis embryonic shoot apical meristem. Development 1992, 115, 745–753.
[92]  Lincoln, C.; Long, J.; Yamaguchi, J.; Serikawa, K.; Hake, S. A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 1994, 6, 1859–1876.
[93]  Nishimura, A.; Tamaoki, M.; Sato, Y.; Matsuoka, M. The expression of tobacco knotted1-type class 1 homeobox genes correspond to regions predicted by the cytohistological zonation model. Plant J. 1999, 18, 337–347, doi:10.1046/j.1365-313X.1999.00457.x.
[94]  Ori, N.; Eshed, Y.; Chuck, G.; Bowman, J.L.; Hake, S. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 2000, 127, 5523–5532.
[95]  Sinha, N.; Hake, S. Mutant characters of knotted maize leaves are determined in the innermost tissue layers. Dev. Biol. 1990, 141, 203–210, doi:10.1016/0012-1606(90)90115-Y.
[96]  Smith, L.G.; Greene, B.; Veit, B.; Hake, S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 1992, 116, 21–30.
[97]  Timmermans, M.C.; Hudson, A.; Becraft, P.W.; Nelson, T. ROUGH SHEATH2: A Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 1999, 284, 151–153, doi:10.1126/science.284.5411.151.
[98]  Vollbrecht, E.; Veit, B.; Sinha, N.; Hake, S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 1991, 350, 241–243, doi:10.1038/350241a0.
[99]  Semiarti, E.; Ueno, Y.; Tsukaya, H.; Iwakawa, H.; Machida, C.; Machida, Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 2001, 128, 1771–1783.
[100]  Hay, A.; Barkoulas, M.; Tsiantis, M. ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 2006, 133, 3955–3961, doi:10.1242/dev.02545.
[101]  Ha, C.M.; Kim, G.T.; Kim, B.C.; Jun, J.H.; Soh, M.S.; Ueno, Y.; Machida, Y.; Tsukaya, H.; Nam, H.G. The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development 2003, 130, 161–172, doi:10.1242/dev.00196.
[102]  Ha, C.M.; Jun, J.H.; Fletcher, J.C. Control of Arabidopsis leaf morphogenesis through regulation of the YABBY and KNOX families of transcription factors. Genetics 2010, 186, 197–206, doi:10.1534/genetics.110.118703.
[103]  Byrne, M.E.; Barley, R.; Curtis, M.; Arroyo, J.M.; Dunham, M.; Hudson, A.; Martienssen, R.A. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 2000, 408, 967–971, doi:10.1038/35050091.
[104]  Scanlon, M.J. The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize. Plant Physiol. 2003, 133, 597–605, doi:10.1104/pp.103.026880.
[105]  Scanlon, M.J.; Schneeberger, R.G.; Freeling, M. The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 1996, 122, 1683–1691.
[106]  Scanlon, M.J. NARROW SHEATH1 functions from two meristematic foci during founder-cell recruitment in maize leaf development. Development 2000, 127, 4573–4585.
[107]  Nardmann, J.; Ji, J.; Werr, W.; Scanlon, M.J. The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 2004, 131, 2827–2839, doi:10.1242/dev.01164.
[108]  Zhang, Y.; Wu, R.; Qin, G.; Chen, Z.; Gu, H.; Qu, L.J. Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis. J. Integr. Plant Biol. 2011, 53, 493–506, doi:10.1111/j.1744-7909.2011.01054.x.
[109]  Schiessl, K.; Kausika, S.; Southam, P.; Bush, M.; Sablowski, R. JAGGED controls growth anisotropyand coordination between cell sizeand cell cycle during plant organogenesis. Curr. Biol. 2012, 22, 1739–1746, doi:10.1016/j.cub.2012.07.020.
[110]  Ohno, C.K.; Reddy, G.V.; Heisler, M.G.; Meyerowitz, E.M. The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development. Development 2004, 131, 1111–1122, doi:10.1242/dev.00991.
[111]  Dinneny, J.; Yadegari, R.; Fischer, R.; Yanofsky, M. The role of JAGGED in shaping lateral organs. Development 2004, 131, 1101–1110, doi:10.1242/dev.00949.
[112]  Dinneny, J.R.; Weigel, D.; Yanofsky, M.F. NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis. Development 2006, 133, 1645–1655, doi:10.1242/dev.02335.
[113]  Nakata, M.; Matsumoto, N.; Tsugeki, R.; Rikirsch, E.; Laux, T.; Okada, K. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 2012, 24, 519–535, doi:10.1105/tpc.111.092858.
[114]  Golz, J.; Roccaro, M.; Kuzoff, R.; Hudson, A. GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves. Development 2004, 131, 3661, doi:10.1242/dev.01221.
[115]  Mchale, N. LAM-1 and FAT genes control development of the leaf blade in Nicotiana sylvestris. Plant Cell 1993, 5, 1029.
[116]  Ichihashi, Y.; Kawade, K.; Usami, T.; Horiguchi, G.; Takahashi, T.; Tsukaya, H. Key proliferative activity in the junction between the leaf blade and leaf petiole of Arabidopsis. Plant Physiol. 2011, 157, 1151–1162, doi:10.1104/pp.111.185066.
[117]  Norberg, M.; Holmlund, M.; Nilsson, O. The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development 2005, 132, 2203–2213, doi:10.1242/dev.01815.
[118]  Zhuang, L.L.; Ambrose, M.; Rameau, C.; Weng, L.; Yang, J.; Hu, X.H.; Luo, D.; Li, X. LATHYROIDES, encoding a WUSCHEL-related homeobox1 transcription factor, controls organ lateral growth, and regulates tendril and dorsal petal identities in garden pea (Pisum sativum L.). Mol. Plant 2012, 5, 1333–1345.
[119]  Vandenbussche, M.; Horstman, A.; Zethof, J.; Koes, R.; Rijpkema, A.; Gerats, T. Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis. Plant Cell 2009, 21, 2269–2283, doi:10.1105/tpc.109.065862.
[120]  Matsumoto, N.; Okada, K. A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers. Genes Dev. 2001, 15, 3355–3364, doi:10.1101/gad.931001.
[121]  Nath, U.; Crawford, B.C.; Carpenter, R.; Coen, E. Genetic control of surface curvature. Science 2003, 299, 1404–1407, doi:10.1126/science.1079354.
[122]  Kuchen, E.E.; Fox, S.; de Reuille, P.B.; Kennaway, R.; Bensmihen, S.; Avondo, J.; Calder, G.M.; Southam, P.; Robinson, S.; Bangham, A.; et al. Generation of leaf shape through early patterns of growth and tissue polarity. Science 2012, 335, 1092–1096, doi:10.1126/science.1214678.
[123]  Ferjani, A.; Horiguchi, G.; Yano, S.; Tsukaya, H. Analysis of leaf development in fugu mutants of Arabidopsis reveals three compensation modes that modulate cell expansion in determinate organs. Plant Physiol. 2007, 144, 988–999, doi:10.1104/pp.107.099325.
[124]  Narita, N.N.; Moore, S.; Horiguchi, G.; Kubo, M.; Demura, T.; Fukuda, H.; Goodrich, J.; Tsukaya, H. Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana. Plant J. 2004, 38, 699–713, doi:10.1111/j.1365-313X.2004.02078.x.
[125]  Ikeuchi, M.; Yamaguchi, T.; Kazama, T.; Ito, T.; Horiguchi, G.; Tsukaya, H. ROTUNDIFOLIA4 regulates cell proliferation along the body axis in Arabidopsis shoot. Plant Cell Physiol 2011, 52, 59–69, doi:10.1093/pcp/pcq138.
[126]  Ichihashi, Y.; Horiguchi, G.; Gleissberg, S.; Tsukaya, H. The bHLH transcription factor SPATULA controls final leaf size in Arabidopsis thaliana. Plant Cell Physiol. 2010, 51, 252–261, doi:10.1093/pcp/pcp184.
[127]  Mizukami, Y.; Fischer, R.L. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc. Natl. Acad. Sci. USA 2000, 97, 942–947, doi:10.1073/pnas.97.2.942.
[128]  Hu, Y.; Xie, Q.; Chua, N.H. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 2003, 15, 1951–1961, doi:10.1105/tpc.013557.
[129]  Feng, G.; Qin, Z.; Yan, J.; Zhang, X.; Hu, Y. Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytol. 2011, 191, 635–646, doi:10.1111/j.1469-8137.2011.03710.x.
[130]  Horiguchi, G.; Kim, G.T.; Tsukaya, H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J. 2005, 43, 68–78, doi:10.1111/j.1365-313X.2005.02429.x.
[131]  Lee, B.H.; Ko, J.H.; Lee, S.; Lee, Y.; Pak, J.H.; Kim, J.H. The Arabidopsis GRF-INTERACTING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties. Plant Physiol. 2009, 151, 655–668, doi:10.1104/pp.109.141838.
[132]  Kim, J.H.; Kende, H. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc. Natl. Acad. Sci. USA 2004, 101, 13374–13379, doi:10.1073/pnas.0405450101.
[133]  Palatnik, J.F.; Allen, E.; Wu, X.; Schommer, C.; Schwab, R.; Carrington, J.C.; Weigel, D. Control of leaf morphogenesis by microRNAs. Nature 2003, 425, 257–263.
[134]  Efroni, I.; Blum, E.; Goldshmidt, A.; Eshed, Y. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 2008, 20, 2293–2306, doi:10.1105/tpc.107.057521.
[135]  Anastasiou, E.; Kenz, S.; Gerstung, M.; MacLean, D.; Timmer, J.; Fleck, C.; Lenhard, M. Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev. Cell 2007, 13, 843–856, doi:10.1016/j.devcel.2007.10.001.
[136]  Autran, D.; Jonak, C.; Belcram, K.; Beemster, G.T.; Kronenberger, J.; Grandjean, O.; Inze, D.; Traas, J. Cell numbers and leaf development in Arabidopsis: A functional analysis of the STRUWWELPETER gene. EMBO J. 2002, 21, 6036–6049, doi:10.1093/emboj/cdf614.
[137]  Rodriguez, R.E.; Mecchia, M.A.; Debernardi, J.M.; Schommer, C.; Weigel, D.; Palatnik, J.F. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 2010, 137, 103–112, doi:10.1242/dev.043067.
[138]  White, D.W. PEAPOD regulates lamina size and curvature in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 13238–13243, doi:10.1073/pnas.0604349103.
[139]  Li, Y.; Zheng, L.; Corke, F.; Smith, C.; Bevan, M.W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev. 2008, 22, 1331–1336, doi:10.1101/gad.463608.
[140]  Xu, R.; Li, Y. Control of final organ size by Mediator complex subunit 25 in Arabidopsis thaliana. Development 2011, 138, 4545–4554, doi:10.1242/dev.071423.
[141]  Kazama, T.; Ichihashi, Y.; Murata, S.; Tsukaya, H. The mechanism of cell cycle arrest front progression explained by a KLUH/CYP78A5-dependent mobile growth factor in developing leaves of Arabidopsis thaliana. Plant Cell Physiol. 2010, 51, 1046–1054, doi:10.1093/pcp/pcq051.
[142]  Kawade, K.; Horiguchi, G.; Tsukaya, H. Non-cell-autonomously coordinated organ size regulation in leaf development. Development 2010, 137, 4221–4227, doi:10.1242/dev.057117.
[143]  Bilsborough, G.D.; Runions, A.; Barkoulas, M.; Jenkins, H.W.; Hasson, A.; Galinha, C.; Laufs, P.; Hay, A.; Prusinkiewicz, P.; Tsiantis, M. Model for the regulation of Arabidopsis thaliana leaf margin development. Proc. Natl. Acad. Sci. USA 2011, 108, 3424–3429, doi:10.1073/pnas.1015162108.
[144]  Zhao, Y.; Christensen, S.K.; Fankhauser, C.; Cashman, J.R.; Cohen, J.D.; Weigel, D.; Chory, J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 2001, 291, 306–309, doi:10.1126/science.291.5502.306.
[145]  Won, C.; Shen, X.; Mashiguchi, K.; Zheng, Z.; Dai, X.; Cheng, Y.; Kasahara, H.; Kamiya, Y.; Chory, J.; Zhao, Y. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 2011, 108, 18518–18523, doi:10.1073/pnas.1108436108.
[146]  Mashiguchi, K.; Tanaka, K.; Sakai, T.; Sugawara, S.; Kawaide, H.; Natsume, M.; Hanada, A.; Yaeno, T.; Shirasu, K.; Yao, H.; et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 2011, 108, 18512–18517, doi:10.1073/pnas.1108434108.
[147]  Cheng, Y.; Dai, X.; Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006, 20, 1790–1799, doi:10.1101/gad.1415106.
[148]  Hu, Y.; Poh, H.M.; Chua, N.H. The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. Plant J. 2006, 47, 1–9, doi:10.1111/j.1365-313X.2006.02750.x.
[149]  Lincoln, C.; Britton, J.H.; Estelle, M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 1990, 2, 1071–1080.
[150]  Keller, C.P.; Stahlberg, R.; Barkawi, L.S.; Cohen, J.D. Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis. Plant Physiol. 2004, 134, 1217–1226, doi:10.1104/pp.103.032300.
[151]  Tsuge, T.; Tsukaya, H.; Uchimiya, H. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 1996, 122, 1589–1600.
[152]  Nakaya, M.; Tsukaya, H.; Murakami, N.; Kato, M. Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol. 2002, 43, 239–244, doi:10.1093/pcp/pcf024.
[153]  Kim, G.T.; Tsukaya, H.; Uchimiya, H. The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev. 1998, 12, 2381–2391, doi:10.1101/gad.12.15.2381.
[154]  Kim, G.T.; Tsukaya, H.; Saito, Y.; Uchimiya, H. Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis. Proc. Natl. Acad. Sci. USA 1999, 96, 9433–9437, doi:10.1073/pnas.96.16.9433.
[155]  Gonzalez, N.; de Bodt, S.; Sulpice, R.; Jikumaru, Y.; Chae, E.; Dhondt, S.; van Daele, T.; de Milde, L.; Weigel, D.; Kamiya, Y.; et al. Increased leaf size: Different means to an end. Plant Physiol. 2010, 153, 1261–1279, doi:10.1104/pp.110.156018.
[156]  Ishiwata, A.; Ozawa, M.; Nagasaki, H.; Kato, M.; Noda, Y.; Yamaguchi, T.; Nosaka, M.; Shimizu-Sato, S.; Nagasaki, A.; Maekawa, M.; et al. Two WUSCHEL-related homeobox Genes, narrow leaf2 and narrow leaf3, Control Leaf Width in Rice. Plant Cell Physiol. 2013, doi:10.1093/pcp/pct032.
[157]  Reinhardt, D.; Frenz, M.; Mandel, T.; Kuhlemeier, C. Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato. Development 2005, 132, 15.
[158]  Candela, H.; Johnston, R.; Gerhold, A.; Foster, T.; Hake, S. The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves. Plant Cell 2008, 20, 2073–2087, doi:10.1105/tpc.108.059709.
[159]  Juarez, M.T.; Kui, J.S.; Thomas, J.; Heller, B.A.; Timmermans, M.C.P. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 2004, 428, 84–88.
[160]  Fu, Y.; Xu, L.; Xu, B.; Yang, L.; Ling, Q.; Wang, H.; Huang, H. Genetic interactions between leaf polarity-controlling genes and ASYMMETRIC LEAVES1 and 2 in Arabidopsis leaf patterning. Plant Cell Physiol. 2007, 48, 724–735, doi:10.1093/pcp/pcm040.
[161]  McHale, N.A.; Koning, R.E. PHANTASTICA regulates development of the adaxial mesophyll in Nicotiana leaves. Plant Cell 2004, 16, 1251–1262, doi:10.1105/tpc.019307.
[162]  Iwasaki, M.; Nitasaka, E. The FEATHERED gene is required for polarity establishment in lateral organs especially flowers of the Japanese morning glory (I pomoea nil ). Plant Mol. Biol. 2006, 62, 913–925, doi:10.1007/s11103-006-9066-2.
[163]  Szakonyi, D.; Moschopoulos, A.; Byrne, M.E. Perspectives on leaf dorsoventral polarity. J. Plant Res. 2010, 123, 281–290, doi:10.1007/s10265-010-0336-3.
[164]  Kim, M.; Pham, T.; Hamidi, A.; McCormick, S.; Kuzoff, R.K.; Sinha, N. Reduced leaf complexity in tomato wiry mutants suggests a role for PHAN and KNOX genes in generating compound leaves. Development 2003, 130, 4405–4415, doi:10.1242/dev.00655.
[165]  Tameshige, T.; Okada, K. National Institute for Basic Biology: Okazaki, Japan, 2013. Unpublished work.
[166]  Tanaka, W.; Toriba, T.; Ohmori, Y.; Yoshida, A.; Kawai, A.; Mayama-Tsuchida, T.; Ichikawa, H.; Mitsuda, N.; Ohme-Takagi, M.; Hirano, H.Y. The YABBY gene TONGARI-BOUSHI1 is involved in lateral organ development and maintenance of meristem organization in the rice spikelet. Plant Cell 2012, 24, 80–95, doi:10.1105/tpc.111.094797.
[167]  Juarez, M.T.; Twigg, R.W.; Timmermans, M.C. Specification of adaxial cell fate during maize leaf development. Development 2004, 131, 4533–4544, doi:10.1242/dev.01328.
[168]  Kumaran, M.K.; Bowman, J.L.; Sundaresan, V. YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell 2002, 14, 2761–2770, doi:10.1105/tpc.004911.
[169]  Nole-Wilson, S.; Krizek, B.A. AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes. Plant Physiol. 2006, 141, 977–987, doi:10.1104/pp.106.076604.
[170]  Stahle, M.I.; Kuehlich, J.; Staron, L.; von Arnim, A.G.; Golz, J.F. YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis. Plant Cell 2009, 21, 3105–3118, doi:10.1105/tpc.109.070458.
[171]  Aloni, R.; Schwalm, K.; Langhans, M.; Ullrich, C.I. Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 2003, 216, 841–853.
[172]  Avsian-Kretchmer, O.; Cheng, J.C.; Chen, L.; Moctezuma, E.; Sung, Z.R. Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol. 2002, 130, 199–209, doi:10.1104/pp.003228.
[173]  Mattsson, J.; Sung, Z.R.; Berleth, T. Responses of plant vascular systems to auxin transport inhibition. Development 1999, 126, 2979–2991.
[174]  Scarpella, E.; Marcos, D.; Friml, J.; Berleth, T. Control of leaf vascular patterning by polar auxin transport. Genes Dev. 2006, 20, 1015–1027, doi:10.1101/gad.1402406.
[175]  Brandt, R.; Salla-Martret, M.; Bou-Torrent, J.; Musielak, T.; Stahl, M.; Lanz, C.; Ott, F.; Schmid, M.; Greb, T.; Schwarz, M.; et al. Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. Plant J. 2012, 72, 31–42, doi:10.1111/j.1365-313X.2012.05049.x.
[176]  Nakata, M.; Okada, K. The three-domain model: A new model for the early development of leaves in Arabidopsis thaliana. Plant Signal. Behav. 2012, 7, 1423–1427, doi:10.4161/psb.21959.
[177]  Leibfried, A.; To, J.P.; Busch, W.; Stehling, S.; Kehle, A.; Demar, M.; Kieber, J.J.; Lohmann, J.U. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 2005, 438, 1172–1175.
[178]  Ohmori, Y.; Tanaka, W.; Kojima, M.; Sakakibara, H.; Hirano, H.Y. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the cle gene FCP1 in rice. Plant Cell 2013, 25, 229–241, doi:10.1105/tpc.112.103432.
[179]  Ikeda, M.; Mitsuda, N.; Ohme-Takagi, M. Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 2009, 21, 3493–3505, doi:10.1105/tpc.109.069997.
[180]  Lin, H.; Niu, L.; McHale, N.A.; Ohme-Takagi, M.; Mysore, K.S.; Tadege, M. Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants. Proc. Natl. Acad. Sci. USA 2013, 110, 366–371, doi:10.1073/pnas.1215376110.
[181]  Shimizu, R.; Ji, J.; Kelsey, E.; Ohtsu, K.; Schnable, P.S.; Scanlon, M.J. Tissue-specificity and evolution of meristematic WOX3 function. Plant Physiol. 2009, 149, 841–850.
[182]  Yao, X.; Wang, H.; Li, H.; Yuan, Z.; Li, F.; Yang, L.; Huang, H. Two types of cis-acting elements control the abaxial epidermis-specific transcription of the MIR165a and MIR166a genes. FEBS Lett. 2009, 583, 3711–3717, doi:10.1016/j.febslet.2009.10.076.
[183]  Carlsbecker, A.; Lee, J.Y.; Roberts, C.J.; Dettmer, J.; Lehesranta, S.; Zhou, J.; Lindgren, O.; Moreno-Risueno, M.A.; Vaten, A.; Thitamadee, S.; et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 2010, 465, 316–321.
[184]  Marin, E.; Jouannet, V.; Herz, A.; Lokerse, A.S.; Weijers, D.; Vaucheret, H.; Nussaume, L.; Crespi, M.D.; Maizel, A. MiR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 2010, 22, 1104–1117, doi:10.1105/tpc.109.072553.
[185]  Miyashima, S.; Honda, M.; Hashimoto, K.; Tatematsu, K.; Hashimoto, T.; Sato-Nara, K.; Okada, K.; Nakajima, K. A comprehensive expression analysis of the Arabidopsis MICRORNA165/6 gene family during embryogenesis reveals a conserved role in meristem specification and a non-cell-autonomous function. Plant Cell Physiol. 2013, 54, 375–384.
[186]  Miyashima, S.; Koi, S.; Hashimoto, T.; Nakajima, K. Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 2011, 138, 2303–2313, doi:10.1242/dev.060491.
[187]  Yadav, R.K.; Perales, M.; Gruel, J.; Girke, T.; Jonsson, H.; Reddy, G.V. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 2011, 25, 2025–2030, doi:10.1101/gad.17258511.
[188]  Horiguchi, G.; Nakayama, H.; Ishikawa, N.; Kubo, M.; Demura, T.; Fukuda, H.; Tsukaya, H. ANGUSTIFOLIA3 plays roles in adaxial/abaxial patterning and growth in leaf morphogenesis. Plant Cell Physiol. 2011, 52, 112–124, doi:10.1093/pcp/pcq178.
[189]  Nole-Wilson, S.; Azhakanandam, S.; Franks, R.G. Polar auxin transport together with aintegumenta and revoluta coordinate early Arabidopsis gynoecium development. Dev. Biol. 2010, 346, 181–195, doi:10.1016/j.ydbio.2010.07.016.
[190]  Yamaguchi, T.; Yano, S.; Tsukaya, H. Genetic framework for flattened leaf blade formation in unifacial leaves of Juncus prismatocarpus. Plant Cell 2010, 22, 2141–2155, doi:10.1105/tpc.110.076927.
[191]  Gleissberg, S.; Groot, E.P.; Schmalz, M.; Eichert, M.; Kolsch, A.; Hutter, S. Developmental events leading to peltate leaf structure in Tropaeolum majus (Tropaeolaceae) are associated with expression domain changes of a YABBY gene. Dev. Genes Evol. 2005, 215, 313–319, doi:10.1007/s00427-005-0479-8.
[192]  Toriba, T.; Suzaki, T.; Yamaguchi, T.; Ohmori, Y.; Tsukaya, H.; Hirano, H.Y. Distinct regulation of adaxial-abaxial polarity in anther patterning in rice. Plant Cell 2010, 22, 1452–1462, doi:10.1105/tpc.110.075291.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133