全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Plants  2013 

Endocytic Pathways and Recycling in Growing Pollen Tubes

DOI: 10.3390/plants2020211

Keywords: pollen tube, polarized growth, clathrin-dependent endocytosis, clathrin-independent endocytosis, exocytosis, membrane recycling, actin cytoskeleton

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pollen tube growth is based on transport of secretory vesicles into the apical region where they fuse with a small area of the plasma membrane. The amount of secretion greatly exceeds the quantity of membrane required for growth. Mechanisms of membrane retrieval have recently been demonstrated and partially characterized using FM (Fei Mao) dyes or charged nanogold. Both these probes reveal that clathrin-dependent and -independent endocytosis occur in pollen tubes and are involved in distinct degradation pathways and membrane recycling. Exocytosis, internalization and sorting of PM proteins/lipids depend on the integrity of the actin cytoskeleton and are involved in actin filament organization. However, some kinds of endocytic and exocytic processes occurring in the central area of the tip still need to be characterized. Analysis of secretion dynamics and data derived from endocytosis highlight the complexity of events occurring in the tip region and suggest a new model of pollen tube growth.

References

[1]  Cheung, A.Y.; Wu, H. Structural and functional compartmentalization in pollen tubes. J. Exp. Bot. 2007, 58, 75–82, doi:10.1093/jxb/erl122.
[2]  Li, Y.Q.; Moscatelli, A.; Cai, G.; Cresti, M. Functional interactions among cytoskeleton, membranes, and cell wall in the pollen tube of flowering plants. Int. Rev. Cytol. 1997, 176, 133–199, doi:10.1016/S0074-7696(08)61610-1.
[3]  Taylor, L.P.; Hepler, P.K. Pollen germination and tube growth. Annu. Rev. Physiol. Plant Mol. Biol. 1997, 48, 461–491, doi:10.1146/annurev.arplant.48.1.461.
[4]  Hepler, P.K.; Vidali, L.; Cheung, A.Y. Polarized cell growth in higher plants. Annu. Rev. Cell Dev. Biol. 2001, 17, 159–187, doi:10.1146/annurev.cellbio.17.1.159.
[5]  Heslop-Harrison, J.; Heslop-Harrison, Y. Dynamic aspects of the apical zonation in the angiosperm pollen tube. Sex. Plant Reprod. 1990, 3, 187–194.
[6]  Cárdenas, L.; Lovy-Wheeler, A.; Wilsen, K.L.; Hepler, P.K. Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. Cell Motil. Cytoskel. 2005, 61, 112–127, doi:10.1002/cm.20068.
[7]  Vidali, L.; McKenna, S.T.; Hepler, P.K. Actin polymerization is essential for pollen tube growth. Mol. Biol. Cell. 2001, 12, 2534–2545.
[8]  Bove, J.; Vaillancourt, B.; Kroeger, J.; Hepler, P.K.; Wiseman, P.W.; Geitmann, A. Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol. 2008, 147, 1646–1658, doi:10.1104/pp.108.120212.
[9]  Kroeger, J.H.; Bou Daher, F.; Grant, M.; Geitmann, A. Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys. J. 2009, 97, 1822–1831, doi:10.1016/j.bpj.2009.07.038.
[10]  Heslop-Harrison, J.; Heslop-Harrison, Y. The actin cytoskeleton in unfixed pollen tubes following microwave-accelerated DMSO permeabilization and TRITC-phalloidin staining. Sex. Plant Reprod. 1991, 4, 6–11.
[11]  Derksen, J.; Rutten, T.L.M.; van Amstel, T.; de Win, A.; Doris, F.; Steer, M. Regulation of pollen tube growth. Acta Bot. Neerl. 1995, 44, 93–119.
[12]  Lovy-Wheeler, A.; Wilsen, K.L.; Baskin, T.I.; Hepler, P.K. Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 2005, 221, 95–104, doi:10.1007/s00425-004-1423-2.
[13]  Lovy-Wheeler, A.; Kunkel, J.G.; Allwood, E.G.; Hussey, P.J.; Hepler, P. Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. Plant Cell 2006, 18, 2182–2193, doi:10.1105/tpc.106.044867.
[14]  Cárdenas, L.; Lovy-Wheeler, A.; Kunkel, J.G.; Hepler, P.K. Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol. 2008, 146, 1611–1621, doi:10.1104/pp.107.113035.
[15]  Vidali, L.; Round, C.M.; Hepler, P.K.; Bezanilla, M. Lifeact-mEGFP reveals a dynamic apical Factin network in tip growing plant cells. PLoS One 2009, 4, 1–15.
[16]  Moscatelli, A.; Ciampolini, F.; Rodighiero, S.; Onelli, E.; Cresti, M.; Santo, N.; Idilli, A.I. Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J. Cell Sci. 2007, 120, 3804–3819, doi:10.1242/jcs.012138.
[17]  Zonia, L.; Munnik, T. Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J. Exp. Bot. 2008, 59, 861–873, doi:10.1093/jxb/ern007.
[18]  Parton, R.M.; Fischer-Parton, S.; Watahiki, M.K.; Trewavas, A.J. Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J. Cell Sci. 2001, 114, 2685–2695.
[19]  Wang, Q.; Kong, L.; Hao, H.; Wang, X.; Lin, J.; Samaj, J.; Baluska, F. Effects of Brefeldin A on pollen germination and tube growth. Antagonistic effects on endocytosis and secretion. Plant Physiol. 2005, 139, 1692–1703, doi:10.1104/pp.105.069765.
[20]  Steer, M.W.; Steer, J.M. Pollen tube tip growth. New Phytol. 1989, 111, 323–358, doi:10.1111/j.1469-8137.1989.tb00697.x.
[21]  Murphy, A.S.; Bandyopadhyay, A.; Holstein, S.E.; Peer, W.A. Endocytotic cycling of membrane proteins. Annu. Rev. Plant Biol. 2005, 56, 221–251, doi:10.1146/annurev.arplant.56.032604.144150.
[22]  Fowke, L.C.; Tanchak, M.A.; Galway, M.E. Ultrastructural cytology of the endocytic pathways in plants. In Endocytosis, Exocytosis and Vesicle Traffic in Plants; Hawes, C.R., Coleman, J.O.D., Evans, D.E., Eds.; UK Cambridge University Press: Cambridge, UK, 1991; pp. 15–40.
[23]  Dettmer, J.; Hong-Hermesdorf, A.; Stierhof, Y.D.; Schumacher, K. Vacuolar H+ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 2006, 18, 715–730, doi:10.1105/tpc.105.037978.
[24]  Lam, S.K.; Siu, C.L.; Hillmer, S.; Jang, S.; An, G.; Robinson, D.G.; Jiang, L. Rice SCAMP1 defines clathrin coated, trans Golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 2007, 19, 296–319, doi:10.1105/tpc.106.045708.
[25]  Viotti, C.; Bubeck, J.; Stierhof, Y.D.; Krebs, M.; Langhans, M.; van der Berg, W.; van Dongen, W.; Richter, S.; Geldner, N.; Takano, J.; et al. Endocytic and secretory traffic in arabidopsis merge in the Trans Golgi Network/Early endosome, an independent and highly dynamic organelle. Plant Cell 2010, 22, 1344–1357, doi:10.1105/tpc.109.072637.
[26]  Gendre, D.; Oh, J.; Boutté, Y.; Best, J.G.; Samuels, L.; Nilsson, R.; Uemura, T.; Marchant, A.; Bennett, M.J.; Grebe, M.; et al. Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation. Proc. Natl. Acad. Sci.USA 2011, 108, 8048–8053, doi:10.1073/pnas.1018371108.
[27]  Herberth, S.; Shahriari, M.; Bruderek, M.; Hessner, F.; Müller, B.; Hülskamp, M.; Schellmann, S. Artificial ubiquitylation is sufficient for sorting of a plasma membrane ATPase to the vacuolar lumen of Arabidopsis cells. Planta 2012, 236, 63–77, doi:10.1007/s00425-012-1587-0.
[28]  Raiborg, C.; Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 2009, 458, 445–452.
[29]  Scheuring, D.; Künzl, F.; Viotti, C.; San Wan Yan, M.; Jiang, L.; Schellmann, S.; Robinson, D.G.; Pimpl, P. Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway. BMC Plant Biol. 2012, doi:10.1186/1471-2229-12-164.
[30]  Onelli, E.; Prescianotto-Baschong, C.; Caccianiga, M.; Moscatelli, A. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J. Exp. Bot. 2008, 59, 3051–3068, doi:10.1093/jxb/ern154.
[31]  Foresti, O.; Gershlick, D.C.; Bottanelli, F.; Hummel, E.; Hawes, C.; Denecke, J. A recycling-defective vacuolar sorting receptor reveals an intermediate compartment situated between prevacuoles and vacuoles in tobacco. Plant Cell 2010, 22, 3992–4008, doi:10.1105/tpc.110.078436.
[32]  Niemes, S.; Langhans, M.; Viotti, C.; Scheuring, D.; San Wan Yan, M.; Jiang, L.; Hillmer, S.; Robinson, D.G.; Pimpl, P. Retromer recycles vacuolar sorting receptors from the trans-Golgi network. Plant J. 2010, 61, 107–121, doi:10.1111/j.1365-313X.2009.04034.x.
[33]  Chavarría-Krauser, A.; Yejie, D. A model of plasma membrane flow and cytosis regulation in growing pollen tubes. J. Theor. Biol. 2011, 285, 10–24, doi:10.1016/j.jtbi.2011.06.008.
[34]  Wang, H.; Tse, Y.C.; Law, A.H.; Sun, S.S.; Sun, Y.B.; Xu, Z.F.; Hillmer, S.; Robinson, D.G.; Jiang, L. Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant J. 2010, 61, 826–838, doi:10.1111/j.1365-313X.2009.04111.x.
[35]  Moscatelli, A.; Idilli, A.I. Pollen tube growth: A delicate equilibrium between secretory and endocytic pathways. J. Integr. Plant Biol. 2009, 51, 727–739, doi:10.1111/j.1744-7909.2009.00842.x.
[36]  Cheung, A.Y.; Wu, H. Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu. Rev. Plant Biol. 2008, 59, 547–572, doi:10.1146/annurev.arplant.59.032607.092921.
[37]  Zou, Y.; Aggarwal, M.; Zheng, W.G.; Wu, H.M.; Cheung, A.Y. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil. AoB Plants 2011, doi:10.1093/aobpla/plr017.
[38]  Lovy-Wheeler, A.; Cárdenas, L.; Kunkel, J.G.; Hepler, P.K. Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cell Motil. Cytoskel. 2007, 64, 217–232, doi:10.1002/cm.20181.
[39]  Moscatelli, A.; Idilli, A.I.; Rodighiero, S.; Caccianiga, M. Inhibition of actin polymerisation by low concentration Latrunculin B affects endocytosis and alters exocytosis in shank and tip of tobacco pollen tubes. Plant Biol. 2012, doi:10.1111/j.1438-8677.2011.00547.x.
[40]  Kost, B.; Spielhofer, P.; Chua, N.H. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 1998, 16, 393–401, doi:10.1046/j.1365-313x.1998.00304.x.
[41]  Gibbon, B.C.; Kovar, D.R.; Staiger, C.J. Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 1999, 11, 2349–2363.
[42]  Chen, C.Y.; Wong, E.I.; Vidali, L.; Estavillo, A.; Hepler, P.K.; Wu, H.M.; Cheung, A.Y. The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 2002, 14, 2175–2190, doi:10.1105/tpc.003038.
[43]  Kost, B.; Lemichez, E.; Spielhofer, P.; Hong, Y.; Tolias, K.; Carpenter, C.; Chua, N.H. Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 1999, 145, 317–330, doi:10.1083/jcb.145.2.317.
[44]  Fu, Y.; Wu, G.; Yang, Z. Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J. Cell Biol. 2001, 152, 1019–1032, doi:10.1083/jcb.152.5.1019.
[45]  Kroeger, J.H.; Geitmann, A. Pollen tube growth: Getting a grip on cell biology through modelling. Mech. Res. Commun. 2012, 42, 32–39, doi:10.1016/j.mechrescom.2011.11.005.
[46]  Cole, R.A.; Synek, L.; Zarsky, V.; Fowler, J.E. SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol. 2005, 138, 2005–2018, doi:10.1104/pp.105.062273.
[47]  Wen, T.J.; Hochholdinger, F.; Sauer, M.; Bruce, W.; Schnable, P.S. The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol. 2005, 138, 1637–1643, doi:10.1104/pp.105.062174.
[48]  Richter, S.; Müller, L.M.; Stierhof, Y.D.; Mayer, U.; Takada, N.; Kost, B.; Vieten, A.; Geldner, N.; Koncz, C.; Jürgens, G. Polarized cell growth in Arabidopsis requires endosomal recycling mediated by GBF1-related ARF exchange factors. Nat. Cell Biol. 2012, 14, 80–86.
[49]  Zheng, Z.L.; Yang, Z. The Rop GTPase: An emerging signaling switch in plants. Plant Mol. Biol. 2000, 44, 1–9, doi:10.1023/A:1006402628948.
[50]  Fu, Y.; Yang, Z. Rop GTPase: A master switch of cell polarity development in plants. Trends Plant Sci. 2001, 6, 545–547, doi:10.1016/S1360-1385(01)02130-6.
[51]  Gu, Y.; Vernoud, V.; Fu, Y.; Yang, Z. ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J. Exp. Bot. 2003, 54, 93–101, doi:10.1093/jxb/erg035.
[52]  Gu, Y.; Wang, Z.; Yang, Z. ROP/RAC GTPase: An old new master regulator for plant signaling. Curr. Opin. Plant Biol. 2004, 7, 527–536, doi:10.1016/j.pbi.2004.07.006.
[53]  Pollard, T.D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 451–477, doi:10.1146/annurev.biophys.35.040405.101936.
[54]  Goode, B.L.; Eck, M.J. Mechanism and function of formins in the control of actin assembly. Annu. Rev. Biochem. 2007, 76, 593–627, doi:10.1146/annurev.biochem.75.103004.142647.
[55]  Ishizaki, T.; Morishima, Y.; Okamoto, M.; Furuyashiki, T.; Kato, T.; Narumiya, S. Coordination of microtubules and actin cytoskeleton by the Rho effector mDia1. Nat. Cell Biol. 2001, 3, 8–14, doi:10.1038/35050598.
[56]  Lancelle, S.A.; Cresti, M.; Hepler, P.K. Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes of Nicotiana alata. Protoplasma 1987, 140, 141–150, doi:10.1007/BF01273723.
[57]  Lancelle, S.A.; Hepler, P.K. Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma 1992, 167, 215–230, doi:10.1007/BF01403385.
[58]  Idilli, A.I.; Onelli, E.; Moscatelli, A. Low concentration of LatB dramatically changes the microtubule organization and the timing of vegetative nucleus/generative cell entrance in tobacco pollen tubes. Plant Signal. Behav. 2012, 7, 947–950, doi:10.4161/psb.20907.
[59]  Cheung, A.Y.; Wu, H.M. Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell 2004, 16, 257–269, doi:10.1105/tpc.016550.
[60]  Ye, J.; Zheng, Y.; Yan, A.; Chen, N.; Wang, Z.; Huang, S.; Yang, Z. Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell 2009, 21, 3868–3884, doi:10.1105/tpc.109.068700.
[61]  Cheung, A.Y.; Niroomand, S.; Zou, Y.; Wu, H.M. A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc. Natl. Acad. Sci. USA 2010, 107, 16390–16395.
[62]  Stevenson, J.M.; Perera, I.Y.; Heilmann, I.I.; Persson, S.; Boss, W.F. Inositol signaling and plant growth. Trends Plant Sci. 2000, 5, 252–258, doi:10.1016/S1360-1385(00)01652-6.
[63]  Martin, T.F.J. Phosphoinositides as spatial regulators of membrane traffic. Curr. Opin. Neurobiol. 1997, 7, 331–338, doi:10.1016/S0959-4388(97)80060-8.
[64]  Kock, M.; Holt, M. Coupling exo- and endocytosis: An essential role for PIP2 at the synapse. Biochim. Biophys. Acta 2012, 1821, 1114–1132.
[65]  Helling, D.; Possart, A.; Cottier, S.; Klahre, U.; Kost, B. Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 2006, 18, 3519–3534, doi:10.1105/tpc.106.047373.
[66]  Sousa, E.; Kost, B.; Malhó, R. Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. Plant Cell 2008, 20, 3050–3064.
[67]  Dowd, P.E.; Coursol, S.; Skirpan, A.L.; Kao, T.H.; Gilroy, S. Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell 2006, 18, 1438–1453, doi:10.1105/tpc.106.041582.
[68]  Ischebeck, T.; Stenzel, I.; Heilmann, I. Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell 2008, 20, 3312–3330, doi:10.1105/tpc.108.059568.
[69]  Franklin-Tong, V.E.; Drobak, B.K.; Allan, A.C.; Watkins, P.; Trewavas, A.J. Growth of Pollen Tubes of Papaver rhoeas Is Regulated by a Slow-Moving Calcium Wave Propagated by Inositol 1,4,5-Trisphosphate. Plant Cell 1996, 8, 1305–1321.
[70]  Monteiro, D.; Liu, Q.; Lisboa, S.; Scherer, G.E.; Quader, H.; Malhó, R. Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J. Exp. Bot. 2005, 56, 1665–1674, doi:10.1093/jxb/eri163.
[71]  Ischebeck, T.; Stenzel, I.; Hempel, F.; Jin, X.; Mosblech, A.; Heilmann, I. Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J. 2011, 65, 453–468, doi:10.1111/j.1365-313X.2010.04435.x.
[72]  Kost, B. Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol. 2008, 18, 119–127, doi:10.1016/j.tcb.2008.01.003.
[73]  Klahre, U.; Becker, C.; Schmitt, A.C.; Kost, B. Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J. 2006, 46, 1018–1031, doi:10.1111/j.1365-313X.2006.02757.x.
[74]  De Win, A.H.N.; Pierson, E.S.; Derksen, J. Rational analysis of organelle trajectories in tobacco pollen tubes reveal characteristics of actomyosin cytoskeleton. Biophys. J. 1999, 76, 1648–1658, doi:10.1016/S0006-3495(99)77324-8.
[75]  Lee, Y.; Kim, E.S.; Choi, Y.; Hwang, I.; Staiger, C.J.; Chung, Y.Y.; Lee, Y. The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol. 2008, 147, 1886–1897, doi:10.1104/pp.108.121590.
[76]  Silva, P.A.; Ul-Rehman, R.; Rato, C.; di Sansebastiano, G.P.; Malhó, R. Asymmetric localization of Arabidopsis SYP124 syntaxin at the pollen tube apical and sub-apical zones is involved in tip growth. BMC Plant Biol. 2010, 10, 179–191, doi:10.1186/1471-2229-10-179.
[77]  Geitmann, A. The rheological properties of the pollen tube cell wall. In Fertilization in Higher Plants; Springer-Verlag: Heidelberg/Berlin, Germany, 1999; pp. 283–297.
[78]  Li, Y.Q.; Mareck, A.; Faleri, C.; Moscatelli, A.; Liu, Q.; Cresti, M. Detection and localization of pectin methylesterase isoforms in pollen tubes of Nicotiana tabacum L. Planta 2002, 214, 734–740, doi:10.1007/s004250100664.
[79]  Chebli, Y.; Kaneda, M.; Zerzour, R.; Geitmann, A. The cell wall of the Arabidopsis thaliana pollen tube-spatial distribution, recycling and network formation of polysaccharides. Plant Physiol. 2012, doi:10.1104/pp.112.199729.
[80]  Fayant, P.; Girlanda, O.; Chebli, Y.; Aubin, C. E.; Villemure, I.; Geitmann, A. Finite element model of polar growth in pollen tubes. Plant Cell 2010, 22, 2579–2593, doi:10.1105/tpc.110.075754.
[81]  Willats, W.G.; Orfila, C.; Limberg, G. Buchholt, H.C.; van Alebeek, G.J.; Voragen, A.G.; Marcus, S.E.; Christensen, T.M.; Mikkelsen, J.D.; Murray, B.S.; Knox, J.P. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J. Biol. Chem. 2001, 276, 19404–19413, doi:10.1074/jbc.M011242200.
[82]  R?ckel, N.; Wolf, S.; Kost, B.; Rausch, T.; Greiner, S. Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J. 2008, 53, 133–143, doi:10.1111/j.1365-313X.2007.03325.x.
[83]  Heslop-Harrison, J. Pollen germination and pollen-tube growth. Int. Rev. Cytol. 1987, 107, 1–78, doi:10.1016/S0074-7696(08)61072-4.
[84]  Cai, G.; Faleri, C.; del Casino, C.; Emons, A.M.; Cresti, M. Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiol. 2011, 155, 1169–1190, doi:10.1104/pp.110.171371.
[85]  Brownfield, L.; Wilson, S.; Newbigin, E.; Bacic, A.; Read, S. Molecular control of the glucan synthaselike protein NaGSL1 and callose synthesis during growth of Nicotiana alata pollen tubes. Biochem. J. 2008, 414, 43–52, doi:10.1042/BJ20080693.
[86]  Ito, E.; Fujimoto, M.; Ebine, K.; Uemura, T.; Ueda, T.; Nakano, A. Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. Plant J. 2012, 69, 204–216, doi:10.1111/j.1365-313X.2011.04782.x.
[87]  Baluska, F.; Samaj, J.; Hlavacka, A.; Kendrik-Jones, J.; Volkmann, D. Actin-dependent fluid phase endocytosis in inner cortex cells of maize root apices. J. Exp. Bot. 2004, 55, 463–473, doi:10.1093/jxb/erh042.
[88]  Bandmann, V.; Homann, U. Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts. Plant J. 2012, 70, 578–584, doi:10.1111/j.1365-313X.2011.04892.x.
[89]  Simons, K.; Gerl, M.-J. Revitalizing membrane rafts: New tools and insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 688–699, doi:10.1038/nrm2977.
[90]  Ewers, H.; Helenius, A. Lipid mediated endocytosis. Cold Spring Harb. Perspect. Biol. 2011, doi:10.1101/cshperspect.a004721.
[91]  Cacas, J.L.; Furt, F.; Le Guédard, M.; Schmitter, J.M.; Buré, C.; Gerbeau-Pissot, P.; Moreau, P.; Bessoule, J.J.; Simon-Plas, F.; Mongrand, S. Lipids of plant membrane rafts. Prog. Lipid Res. 2012, 51, 272–299, doi:10.1016/j.plipres.2012.04.001.
[92]  Morel, J.S.; Claverol, S.; Mongrand, F.; Furt, J.; Fromentin, J.J.; Bessoule, J.P.; Blein, F.; Simon-Plas, F. Proteomics of plant detergent-resistant membranes. Mol. Cell Proteomics 2006, 5, 1396–1411, doi:10.1074/mcp.M600044-MCP200.
[93]  Lefebvre, B.F.; Furt, M.A.; Hartmann, L.V.; Michaelson, J.P.; Carde, F.; Sargueil-Boiron, M.; Rossignol, J.A.; Napier, J.; Cullimore, J.J.; Bessoule, J.J.; et al. Characterization of lipid rafts from Medicago truncatula root plasma membranes: A proteomic study reveals the presence of a raft-associated redox system. Plant Physiol. 2007, 144, 402–418, doi:10.1104/pp.106.094102.
[94]  Men, S.; Boutté, Y.; Ikeda, Y.; Li, X.; Palme, K.; Stierhof, Y.D.; Hartmann, M.A.; Moritz, T.; Grebe, M. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat. Cell Biol. 2008, 10, 237–244, doi:10.1038/ncb1686.
[95]  Li, R.; Liu, P.; Wan, Y.; Chen, T.; Wang, Q.; Mettbach, U.; Baluska, F.; Samaj, J.; Fang, X.; Lucas, W.J.; et al. A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 2012, 24, 2105–2122, doi:10.1105/tpc.112.095695.
[96]  Frick, M.; Bright, N.A.; Riento, K.; Bray, A.; Merrified, C.; Nichols, B.J. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr. Biol. 2007, 17, 1151–1156, doi:10.1016/j.cub.2007.05.078.
[97]  Chae, K.; Zhang, K.; Zhang, L.; Morikis, D.; Kim, S.T.; Mollet, J.C.; de la Rosa, N.; Tan, K.; Lord, E.M. Two SCA (stigma/style cysteine-rich adhesin) isoforms show structural differences that correlate with their levels of in vitro pollen tube adhesion activity. J. Biol. Chem. 2007, 282, 33845–33858, doi:10.1074/jbc.M703997200.
[98]  Kim, S.T.; Zhang, K.; Dong, J.; Lord, E.M. Exogenous free ubiquitin enhances lily pollen tube adhesion to an in vitro stylar matrix and may facilitate endocytosis of SCA. Plant Physiol. 2006, 142, 1397–1411, doi:10.1104/pp.106.086801.
[99]  K?nig, S.; Ischebeck, T.; Lerche, J.; Stenzel, I.; Heilmann, I. Salt-stress-induced association of phosphatidylinositol 4,5-bisphosphate with clathrin-coated vesicles in plants. Biochem. J. 2008, 415, 387–399, doi:10.1042/BJ20081306.
[100]  Zhao, Y.; Yan, A.; Feijó, J.A.; Furutani, M.; Takenawa, T.; Hwang, I.; Fu, Y.; Yang, Z. Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell 2010, 22, 4031–4044, doi:10.1105/tpc.110.076760.
[101]  Guo, F.; McCubbin, A.G. The pollen-specific R-SNARE/longin PiVAMP726 mediates fusion of endo- and exocytic compartments in pollen tube tip growth. J. Exp. Bot. 2012, 63, 3083–3095.
[102]  Saheki, Y.; de Camilli, P. Synaptic vesicle endocytosis. Cold Spring Harb. Perspect. Biol. 2012, doi:10.1101/cshperspect.a005645.
[103]  Tiezzi, A.; Moscatelli, A.; Cai, G.; Bartalesi, A.; Cresti, M. An immunoreactive homolog of mammalian kinesin in Nicotiana tabacum pollen tubes. Cell Motil. Cytoskel. 1992, 21, 132–137, doi:10.1002/cm.970210206.
[104]  Terasaka, O.; Niitsu, T. Kinesin localized in the pollen tube tips of Pinus densiflora. Jpn. J. Palynol. 1994, 40, 1–6.
[105]  Cai, G.; Bartalesi, A.; del Casino, C.; Moscatelli, A.; Tiezzi, A.; Cresti, M. The kinesin-immunoreactive homologue from Nicotiana tabacum pollen tubes: Biochemical properties and subcellular localization. Planta 1993, 191, 496–506.
[106]  Romagnoli, S.; Cai, G.; Cresti, M. In vitro assays demonstrate that pollen tube organelles use kinesin-related motor proteins to move along microtubules. Plant Cell 2003, 15, 251–269, doi:10.1105/tpc.005645.
[107]  Cai, G.; Cresti, M. Are kinesins required for organelle trafficking in plant cells? Front. Plant Sci. 2012, 3, 170–179.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133