One challenge in studying the second messenger inositol(1,4,5)-trisphosphate (InsP 3) is that it is present in very low amounts and increases only transiently in response to stimuli. To identify events downstream of InsP 3, we generated transgenic plants constitutively expressing the high specific activity, human phosphatidylinositol 4-phosphate 5-kinase Iα ( HsPIPKIα). PIP5K is the enzyme that synthesizes phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P 2); this reaction is flux limiting in InsP 3 biosynthesis in plants. Plasma membranes from transgenic Arabidopsis expressing HsPIPKIα had 2–3 fold higher PIP5K specific activity, and basal InsP 3 levels in seedlings and leaves were >2-fold higher than wild type. Although there was no significant difference in photosynthetic electron transport, HsPIPKIα plants had significantly higher starch (2–4 fold) and 20% higher anthocyanin compared to controls. Starch content was higher both during the day and at the end of dark period. In addition, transcripts of genes involved in starch metabolism such as SEX1 (glucan water dikinase) and SEX4 (phosphoglucan phosphatase), DBE (debranching enzyme), MEX1 (maltose transporter), APL3 (ADP-glucose pyrophosphorylase) and glucose-6-phosphate transporter (Glc6PT) were up-regulated in the HsPIPKIα plants. Our results reveal that increasing the phosphoinositide (PI) pathway affects chloroplast carbon metabolism and suggest that InsP 3 is one component of an inter-organelle signaling network regulating chloroplast metabolism.
References
[1]
Balla, T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 2013, 93, 1019–1137, doi:10.1152/physrev.00028.2012.
[2]
Munnik, T.; Nielsen, E. Green light for polyphosphoinositide signals in plants. Curr. Opin. Plant. Biol. 2011, 14, 498–497, doi:10.1016/j.pbi.2011.06.002.
Ischebeck, T.; Seiler, S.; Heilmann, I. At the poles across kingdoms: Phosphoinositides and polar tip growth. Protoplasma 2010, 240, 13–31, doi:10.1007/s00709-009-0093-0.
[5]
Dowd, P.; Gilroy, S. The emerging roles of phospholipase C in plant growth and development. In Lipid Signaling in Plants, Plant Cell Monographs; Springer: Berlin/Heidelberg, Germany, 2010; Volume 16, pp. 23–37.
[6]
Kusano, H.; Testerink, C.; Vermeer, J.E.M.; Tsuge, T.; Shimada, H.; Oka, A.; Munnik, T.; Aoyama, T. The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 2008, 20, 367–380, doi:10.1105/tpc.107.056119.
[7]
Lee, Y.; Kim, E.-S.; Choi, Y.; Hwang, I.; Staiger, C.J.; Chung, Y.-Y.; Lee, Y. The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol. 2008, 147, 1886–1897, doi:10.1104/pp.108.121590.
[8]
Lee, Y.; Bak, G.; Choi, Y.; Chuang, W.-I.; Cho, H.-T.; Lee, Y. Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol. 2008, 147, 624–635, doi:10.1104/pp.108.117341.
[9]
Tan, X.; Calderon-Villalobos, L.I.; Sharon, M.; Zheng, C.; Robinson, C.V.; Estelle, M.; Zheng, N. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007, 446, 640–645, doi:10.1038/nature05731.
Hong, Z.; Verma, D.P. A phosphatidylinositol 3-kinase is induced during soybean nodule organogenesis and is associated with membrane proliferation. Proc. Natl. Acad. Sci. USA 1994, 91, 9617–9621, doi:10.1073/pnas.91.20.9617.
[20]
Dall’Armi, C.; Devereaux, K.A.; di Paolo, G. The role of lipids in the control of autophagy. Curr. Biol. 2013, 23, R33–R45.
[21]
Tamura, N.; Oku, M.; Ito, M.; Noda, N.N.; Inagaki, F.; Sakai, Y. Atg18 phosphoregulation controls organellar dynamics by modulating its phosphoinositide-binding activity. J. Cell Biol. 2013, 202, 685–698, doi:10.1083/jcb.201302067.
[22]
Preuss, M.L.; Schmitz, A.J.; Thole, J.M.; Bonner, H.K.S.; Otegui, M.S.; Nielsen, E. A role for the RabA4b effector protein, PI-4Kb1, in polarized expansion of root hair cells in Arabidopsis. J. Cell Biol. 2006, 172, 991–998, doi:10.1083/jcb.200508116.
[23]
Thole, J.M.; Nielsen, E. Phosphoinositides in plants: Novel functions in membrane trafficking. Curr. Opin. Plant Biol. 2008, 11, 620–631, doi:10.1016/j.pbi.2008.10.010.
[24]
Torabinejad, J.; Gillaspy, G.E. Functional genomics of inositol metabolism. In Biology of Inositols and Phosphoinositides; Majumder, A.L., Biswas, B.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 39, pp. 47–70.
[25]
Heilmann, I. Using genetic tools to understand plant phosphoinositide signalling. Trends Plant Sci. 2009, 14, 171–179, doi:10.1016/j.tplants.2008.12.002.
[26]
Gillaspy, G. Signaling and the polyphosphoinositide phosphatases from plants. In Lipid Signaling in Plants, Plant Cell Monographs; Springer: Berlin/Heidelberg, Germany, 2010; Volume 16, pp. 117–130.
[27]
Im, Y.; Heilmann, I.; Perera, I. The hull of fame: Lipid signaling in the plasma membrane. In The Plant Plasma Membrane, Plant Cell Monographs; Springer: Berlin/Heidelberg, Germany, 2011; Volume 19, pp. 437–455.
[28]
Gillaspy, G.E. The cellular language of myo-inositol signaling: Tansley review. New Phytol. 2011, 192, 823–839, doi:10.1111/j.1469-8137.2011.03939.x.
[29]
Cárdenas, C.; Miller, R.A.; Smith, I.; Bui, T.; Molgó, J.; Müller, M.; Vais, H.; Cheung, K.-H.; Yang, J.; Parker, I.; et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 2010, 142, 270–283, doi:10.1016/j.cell.2010.06.007.
[30]
Kumar, S.; Dey, D.; Hasan, G. Patterns of gene expression in Drosophila InsP3 receptor mutant larvae reveal a role for InsP3 signaling in carbohydrate and energy metabolism. PLoS One 2011, 6, e24105, doi:10.1371/journal.pone.0024105.
[31]
Johnson, C.H.; Knight, M.R.; Kondo, T.; Masson, P.; Sedbrook, J.; Haley, A.; Trewavas, A. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 1995, 269, 1863–1865.
[32]
Love, J.; Dodd, A.N.; Webb, A.A.R. Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell 2004, 16, 956–966, doi:10.1105/tpc.020214.
Dodd, A.N.; Kudla, J.; Sanders, D. The language of calcium signaling. Annu. Rev. Plant Biol. 2010, 61, 593–620, doi:10.1146/annurev-arplant-070109-104628.
[35]
DeFalco, T.A.; Bender, K.W.; Snedden, W.A. Breaking the code: Ca2+ sensors in plant signalling. Biochem. J. 2010, 425, 27–40, doi:10.1042/BJ20091147.
[36]
Johnson, C.H.; Shingles, R.; Ettinger, W. Regulation and role of calcium fluxes in the chloroplast. In The Structure and Function of Plastids; Wise, R., Hoober, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 23, pp. 403–432.
[37]
Sai, J.; Johnson, C.H. Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 2002, 14, 1279–1291.
[38]
Kreimer, G.; Melkonian, M.; Holtum, J.A.M.; Latzko, E. Stromal free calcium concentration and light-mediated activation of chloroplast fructose-1,6-bisphosphatase. Plant Physiol. 1988, 86, 423–428, doi:10.1104/pp.86.2.423.
[39]
Brauer, M.; Sanders, D.; Stitt, M. Regulation of photosynthetic sucrose synthesis: A role for calcium? Planta 1990, 182, 236–243.
[40]
Stael, S.; Wurzinger, B.; Mair, A.; Mehlmer, N.; Vothknecht, U.C.; Teige, M. Plant organellar calcium signalling: An emerging field. J. Exp. Botany 2011, 63, 1525–1542.
[41]
Rocha, A.G.; Vothknecht, U.C. The role of calcium in chloroplasts—An intriguing and unresolved puzzle. Protoplasma 2012, 249, 957–966, doi:10.1007/s00709-011-0373-3.
[42]
Morse, M.J.; Crain, R.C.; Satter, R.L. Light-stimulated inositol phospholipid turnover in Samanea saman leaf pulvini. Proc. Natl. Acad. Sci. USA 1987, 84, 7075–7078, doi:10.1073/pnas.84.20.7075.
[43]
Kim, H.Y.; Cote, G.G.; Crain, R.C. Inositol 1,4,5-trisphosphate may mediate reguation of K+ channels by light and darkness in Samanea saman motor cells. Planta 1996, 198, 279–287.
[44]
Coursol, S.; Giglioli-Guivarc’h, N.; Vidal, J.; Pierre, J.-N. An increase in phosphoinositide-specific phospholipase C activity precedes induction of C4 phosphoenolpyruvate carboxylase phosphorylation in illuminated and NH4Cl-treated protoplasts from Digitaria sanguinalis. Plant J. 2000, 23, 497–506, doi:10.1046/j.1365-313x.2000.00819.x.
[45]
Williams, M.E.; Torabinejad, J.; Cohick, E.; Parker, K.; Drake, E.J.; Thompson, J.E.; Hortter, M.; Dewald, D.B. Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway. Plant Physiol. 2005, 138, 686–700, doi:10.1104/pp.105.061317.
[46]
Gong, P.; Wu, G.; Ort, D.R. Slow dark deactivation of Arabidopsis chloroplast ATP synthase caused by a mutation in a nonplastidic SAC domain protein. Photosynth. Res. 2006, 88, 133–142, doi:10.1007/s11120-006-9041-4.
[47]
Perera, I.Y.; Hung, C.Y.; Brady, S.; Muday, G.K.; Boss, W.F. A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. Plant Physiol. 2006, 140, 746–750, doi:10.1104/pp.105.075119.
[48]
Munnik, T.; Vermeer, J.E.M. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ. 2010, 33, 655–669, doi:10.1111/j.1365-3040.2009.02097.x.
Stevenson-Paulik, J.; Phillippy, B.Q. Inositol polyphosphates and kinases. In Lipid Signaling in Plants; Munnik, T., Ed.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2010; Volume 16, pp. 161–174.
[54]
Zonia, L.; Munnik, T. Cracking the green paradigm: Functional coding of phosphoinositide signals in plant stress responses. Subcell. Biochem. 2006, 39, 207–237, doi:10.1007/0-387-27600-9_9.
[55]
Brearley, C.A.; Hanke, D.E. Metabolic evidence for the order of addition of individual phosphate esters in the myo-inositol moiety of inositol hexakisphosphate in the duckweed Spirodela polyrhiza L. Biochem. J. 1996, 314, 227–233.
[56]
Raboy, V.; Young, K.A.; Dorsch, J.A.; Cook, A. Genetics and breeding of seed phosphorus and phytic acid. J. Plant Physiol. 2001, 158, 489–497, doi:10.1078/0176-1617-00361.
Streb, S.; Zeeman, S.C. Starch Metabolism in Arabidopsis. Arabidopsis Book 2012, 10, e0160.
[61]
Stitt, M.; Zeeman, S.C. Starch turnover: Pathways, regulation and role in growth. Curr. Opin. Plant Biol. 2012, 15, 282–292, doi:10.1016/j.pbi.2012.03.016.
[62]
Graf, A.; Schlereth, A.; Stitt, M.; Smith, A.M. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc. Natl. Acad. Sci. USA 2010, 107, 9458–9463, doi:10.1073/pnas.0914299107.
[63]
Lu, Y.; Jackson, P.G.; Sharkey, T.D. Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiol. 2005, 138, 2280–2291, doi:10.1104/pp.105.061903.
[64]
Kramer, D.M.; Evans, J.R. The importance of energy balance in improving photosynthetic productivity. Plant Physiol. 2011, 155, 70–78, doi:10.1104/pp.110.166652.
[65]
Kohzuma, K.; Cruz, J.A.; Akashi, K.; Hoshiyasu, S.; Munekage, Y.N.; Yokota, A.; Kramer, D.M. The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ. 2009, 32, 209–219, doi:10.1111/j.1365-3040.2008.01912.x.
[66]
Jia, H.; Oguchi, R.; Hope, A.B.; Barber, J.; Chow, W.S. Differential effects of severe water stress on linear and cyclic electron fluxes through photosystem I in spinach leaf discs in CO2-enriched air. Planta 2008, 228, 803–812, doi:10.1007/s00425-008-0783-4.
[67]
Joliot, P.; Joliot, A. Quantification of cyclic and linear flows in plants. Proc. Natl. Acad. Sci. USA 2005, 102, 4913–4918, doi:10.1073/pnas.0501268102.
Baker, N.R.; Harbinson, J.; Kramer, D.M. Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell Environ. 2007, 30, 1107–1125, doi:10.1111/j.1365-3040.2007.01680.x.
[70]
Avenson, T.J.; Cruz, J.A.; Kanazawa, A.; Kramer, D.M. Regulating the proton budget of higher plant photosynthesis. Proc. Natl. Acad. Sci. USA 2005, 102, 9709–9713, doi:10.1073/pnas.0503952102.
[71]
Scheibe, R. Malate valves to balance cellular energy supply. Physiol. Plant 2004, 120, 21–26, doi:10.1111/j.0031-9317.2004.0222.x.
Nomura, H.; Komori, T.; Kobori, M.; Nakahira, Y.; Shiina, T. Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure: Chloroplast, stomatal movement and Ca2+ signal. Plant J. 2007, 53, 988–998, doi:10.1111/j.1365-313X.2007.03390.x.
Gunesekera, B.; Torabinejad, J.; Robinson, J.; Gillaspy, G.E. Inositol polyphosphate 5-phosphatases 1 and 2 are required for regulating seedling growth. Plant Physiol. 2007, 143, 1408–1417, doi:10.1104/pp.106.089474.
[76]
Zhong, R.; Ye, Z.H. Molecular and biochemical characterization of three WD-repeat-domain-containing inositol polyphosphate 5-phosphatases in Arabidopsis thaliana. Plant Cell Physiol. 2004, 45, 1720–1728, doi:10.1093/pcp/pch187.
[77]
Wang, Y.; Chu, Y.-J.; Xue, H.-W. Inositol polyphosphate 5-phosphatase-controlled Ins(1,4,5)P3/Ca2+ is crucial for maintaining pollen dormancy and regulating early germination of pollen. Development 2012, 139, 2221–2233, doi:10.1242/dev.081224.
[78]
Carland, F.M.; Nelson, T. Cotyledon vascular pattern2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell 2004, 16, 1263–1275, doi:10.1105/tpc.021030.
[79]
Finka, A.; Cuendet, A.F.H.; Maathuis, F.J. M.; Saidi, Y.; Goloubinoff, P. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 2012, 24, 3333–3348, doi:10.1105/tpc.112.095844.
[80]
Wu, H.-C.; Hsu, S.-F.; Luo, D.-L.; Chen, S.-J.; Huang, W.-D.; Lur, H.-S.; Jinn, T.-L. Recovery of heat shock-triggered released apoplastic Ca2+ accompanied by pectin methylesterase activity is required for thermotolerance in soybean seedlings. J. Exp. Botany 2010, 61, 2843–2852, doi:10.1093/jxb/erq121.
[81]
Saidi, Y.; Finka, A.; Muriset, M.; Bromberg, Z.; Weiss, Y.G.; Maathuis, F.J.M.; Goloubinoff, P. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 2009, 21, 2829–2843, doi:10.1105/tpc.108.065318.
[82]
Mishkind, M.; Vermeer, J.E.; Darwish, E.; Munnik, T. Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. Plant J. 2009, 60, 10–21, doi:10.1111/j.1365-313X.2009.03933.x.
[83]
Zhong, R.; Burk, D.H.; Nairn, C.J.; Wood-Jones, A.; Morrison, W.H.; Ye, Z.H. Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell 2005, 17, 1449–1466, doi:10.1105/tpc.105.031377.
[84]
Zhong, R.; Burk, D.H.; Morrison, W.H.; Ye, Z.H. FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. Plant Cell 2004, 16, 3242–3259, doi:10.1105/tpc.104.027466.
[85]
Zhong, R.; McCarthy, R.; Ye, Z.-H. Phosphoinositides and plant cell wall synthesis. In Lipid Signaling in Plants; Springer: Berlin/Heidelberg, Germany, 2010; Volume 16, pp. 175–184.
[86]
Mikami, K.; Katagiri, T.; Iuchi, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J. 1998, 15, 563–568, doi:10.1046/j.1365-313X.1998.00227.x.
[87]
Tucker, E.B.; Boss, W.F. Mastoparan-induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol. 1996, 111, 459–467.
[88]
Alkhalfioui, F.; Renard, M.; Frendo, P.; Keichinger, C.; Meyer, Y.; Gelhaye, E.; Hirasawa, M.; Knaff, D.B.; Ritzenthaler, C.; Montrichard, F. A novel type of thioredoxin dedicated to symbiosis in Legumes. Plant Physiol. 2008, 148, 424–435, doi:10.1104/pp.108.123778.
[89]
Mosblech, A.; Konig, S.; Stenzel, I.; Grzeganek, P.; Feussner, I.; Heilmann, I. Phosphoinositide and inositolpolyphosphate signalling in defense responses of Arabidopsis thaliana challenged by mechanical wounding. Mol. Plant 2008, 1, 249–261, doi:10.1093/mp/ssm028.
[90]
Chen, H.; Nelson, R.S.; Sherwood, J.L. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 1994, 16, 664–670.
[91]
Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana: Floral dip transformation of Arabidopsis. Plant. J. 1998, 16, 735–743, doi:10.1046/j.1365-313x.1998.00343.x.
[92]
Han, S.; Kim, D. AtRTPrimer: Database for Arabidopsis genome-wide homogeneous and specific RT-PCR primer-pairs. BMC Bioinform. 2006, 7, 179–187, doi:10.1186/1471-2105-7-179.
[93]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the DD CT method. Methods 2001, 25, 402–408, doi:10.1006/meth.2001.1262.
[94]
Weigel, D.; Glazebrook, J. Arabidopsis: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, CA, USA, 2002.
[95]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254, doi:10.1016/0003-2697(76)90527-3.
[96]
Perera, I.Y.; Love, J.; Heilmann, I.; Thompson, W.F.; Boss, W.F. Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase. Plant Physiol. 2002, 129, 1795–1806, doi:10.1104/pp.003426.
[97]
Kansas Lipidomics Research Center. Extraction of lipids from Arabidopsis leaf tissue. Available online: http://www.k-state.edu/lipid/lipidomics/leaf-extraction.html (accessed on 1 December 2013).
[98]
Phillippy, B.Q.; Johnston, M.R. Determination of phytic acid in foods by ion chromatography with post-column derivatization. J. Food Sci. 1985, 50, 541–542, doi:10.1111/j.1365-2621.1985.tb13449.x.
[99]
Phillippy, B.Q.; Bland, J.M. Gradient ion chromatography of inositol phosphates. Anal. Biochem. 1988, 175, 162–166, doi:10.1016/0003-2697(88)90374-0.
[100]
Bentsink, L.; Yuan, K.; Koornneef, M.; Vreugdenhil, D. The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor. Appl. Genet. 2003, 106, 1234–1243.
[101]
Bartlett, G.R. Phosphorous assay in column chromatogrphy. J. Biol. Chem. 1954, 234, 466–468.
[102]
Teng, S.; Keurentjes, J.; Bentsink, L.; Koornneef, M.; Smeekens, S. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 2005, 139, 1840–1852, doi:10.1104/pp.105.066688.
[103]
Smith, A.M.; Zeeman, S.C. Quantification of starch in plant tissues. Nat. Protoc. 2006, 1, 1342–1345, doi:10.1038/nprot.2006.232.
[104]
Matsumura, H. Miyachi Cycling assay for nicotinamide adenine dinucleotides. Methods Enzymol. 1980, 69, 465–470.
[105]
Hall, C.C.; Cruz, J.; Wood, M.; Zegarac, R.; Carpenter, J.; Kanazawa, A.; Kramer, D.M. Photosynthetic Measurements with the idea spec: An integrated diode emitter array spectrophotometer/fluorometer. In Photosynthesis Research for Food, Fuel and the Future, Proceedings of the 15th International Conference on Photosynthesis, Beijing, China, 22–27 August 2010; Kuang, T., Lu, C., Zhang, L., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 184–188.
[106]
Livingston, A.K.; Cruz, J.A.; Kohzuma, K.; Dhingra, A.; Kramer, D.M. An Arabidopsis mutant with high cyclic electron flow around photosystem I (HCEF) involving the NADPH dehydrogenase complex. Plant Cell 2010, 22, 221–233, doi:10.1105/tpc.109.071084.
[107]
Livingston, A.K.; Kanazawa, A.; Cruz, J.A.; Kramer, D.M. Regulation of cyclic electron flow in C3 plants: Differential effects of limiting photosynthesis at ribulose-1,5-bisphosphate carboxylase/oxygenase and glyceraldehyde-3-phosphate dehydrogenase. Plant Cell Environ. 2010, 33, 1779–1788, doi:10.1111/j.1365-3040.2010.02183.x.
[108]
Harbinson, J.; Genty, B.; Baker, N.R. Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant. Physiol. 1989, 90, 1029–1034, doi:10.1104/pp.90.3.1029.
[109]
Gentry, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92, doi:10.1016/S0304-4165(89)80016-9.
[110]
Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113, doi:10.1146/annurev.arplant.59.032607.092759.
[111]
Mehlmer, N.; Parvin, N.; Hurst, C.H.; Knight, M.R.; Teige, M.; Vothknecht, U.C. A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana. J. Exp. Bot. 2012, 63, 1751–1761, doi:10.1093/jxb/err406.
Swanson, S.J.; Choi, W.-G.; Chanoca, A.; Gilroy, S. In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu. Rev. Plant Biol. 2011, 62, 273–297, doi:10.1146/annurev-arplant-042110-103832.