In order to further improve the biocompatibility of xylitol based poly(xylitol sebacate) (PXS) bioelastomer, a novel kind of amino acid based poly(xylitol glutamate sebacate) (PXGS) has been successfully prepared in this work by melt polycondensation of xylitol, N-Boc glutamic acid and sebacic acid. Differential scanning calorimetry (DSC) results indicated the glass-transition temperatures could be decreased by feeding N-Boc glutamic acid. In comparison to PXS, PXGS exhibited comparable tensile strength and much higher elongation at break at the same ratio of acid/xylitol. The introduction of glutamic acid increased the hydrophilicity and in vitro degradation rate of the bioelastomer. It was found that PXGS exhibited excellent properties, such as tensile properties, biodegradability and hydrophilicity, which could be easily tuned by altering the feeding monomer ratios. The amino groups in the PXGS polyester side chains are readily functionalized, thus the biomelastomers can be considered as potential biomaterials for biomedical application.
References
[1]
Allen, J.; Khan, S. Characterization of porcine circulating progenitor cells: Toward a functional endothelium. Tissue Eng. A 2008, 14, 183–191.
[2]
Alperin, C.; Zandstra, P.W. Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials 2005, 26, 7377–7386, doi:10.1016/j.biomaterials.2005.05.064.
[3]
Nagata, M.; Kanechika, M. Biodegradable network elastomeric polyesters from multifunctional aromatic carboxylic acids and poly(ε-caprolactone) diols. J. Polym. Sci. A Polym. Chem. 2002, 40, 4523–4529, doi:10.1002/pola.10539.
[4]
Kang, Y.; Yang, J. A new biodegradable polyester elastomer for cartilage tissue engineering. J. Biomed. Mater. Res. 2006, 77, 331–339, doi:10.1002/jbm.a.30607.
[5]
Puskas, J.E.; Chen, Y.H. Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement. Biomacromolecules 2004, 5, 1141–1154, doi:10.1021/bm034513k.
[6]
Mihye, K.; Bohee, H. Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects. Biomacromolecules 2012, 13, 2287–2298, doi:10.1021/bm3005353.
[7]
Sundback, C.A.; Shyu, J.Y. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 2005, 26, 5454–5465, doi:10.1016/j.biomaterials.2005.02.004.
[8]
Rizzarelli, P.; Impallomeni, G. Evidence for selective hydrolysis of aliphatic copolyesters induced by lipase catalysis. Biomacromolecules 2004, 5, 433–444, doi:10.1021/bm034230s.
[9]
Lindstrom, A.; Albertsson, A.C. Quantitative determination of degradation products, an effective means to study early stages of egradation in linear and branched poly(butylene adipate) and poly(butylene succinate). Polym. Degrad. Stab. 2004, 83, 487–493, doi:10.1016/j.polymdegradstab.2003.07.001.
[10]
Wang, Y.; Kim, Y.M.; Langer, R. In vivo degradation characteristics of poly(glycerol sebacate). J. Biomed. Mater. Res. A 2003, 66, 192–197, doi:10.1002/jbm.a.10534.
[11]
Zhao, W.; Xing, Z. Synthesis and characterization of novel soybean-oil-based elastomers with favorable processability and tunable properties. Macromolecules 2012, 45, 9010–9019, doi:10.1021/ma301938a.
[12]
Lei, L.J.; Ding, T. Synthesis, characterization and in vitro degradation of a novel degradable poly[(1,2-propanediol-sebacate)-citrate] bioelastomer. Polym. Degrad. Stab. 2007, 92, 389–396, doi:10.1016/j.polymdegradstab.2006.12.004.
[13]
Guo, B.C.; Chen, Y.W. Biobased poly(propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications. Biomacromolecules 2011, 12, 1312–1321, doi:10.1021/bm2000378.
Joost, P.; Bruggeman, C.J. Biodegradable xylitol-based elastomers: In vivo behavior and biocompatibility. J. Biomed. Mater. Res. A 2010, 1, 92–104.
[16]
Ellingsworth, L.R.; DeLustro, F. The human immune response to reconstituted bovine collagen. J. Immunol. 1986, 136, 877–882.
[17]
Lupton, J.R.; Alster, T.S. Cutaneous hypersensitivity reaction to injectable hyaluronic acid gel. Dermatol. Surg. 2000, 26, 135–137, doi:10.1046/j.1524-4725.2000.99202.x.
[18]
Borschel, G.H.; Kia, K.F. Mechanical properties of acellular peripheral nerve. J. Surg. Res. 2003, 114, 133–139, doi:10.1016/S0022-4804(03)00255-5.
[19]
Clerin, V.; Nichol, J.W. Tissue engineering of arteries by directed remodeling of intact arterial segments. Tissue Eng. 2003, 9, 461–472, doi:10.1089/107632703322066642.
[20]
Hjortdal, J.O. Regional elastic performance of the human cornea. J. Biomech. 1996, 29, 931–934, doi:10.1016/0021-9290(95)00152-2.
[21]
Kyle, S.; Aggeli, A. Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol. 2009, 27, 423–433, doi:10.1016/j.tibtech.2009.04.002.
[22]
Chun, L. Poly(l-glutamic acid)-anticancer drug conjugates. Adv. Drug Deliv. Rev. 2002, 54, 695–713, doi:10.1016/S0169-409X(02)00045-5.
[23]
Markland, P.; Amidon, G.L. Modified polypeptides containing γ-benzyl glutamic acid as drug delivery platforms. Int. J. Pharm. 1999, 178, 183–192, doi:10.1016/S0378-5173(98)00373-1.
[24]
Cao, B.; Yin, J.B. Porous scaffolds based on cross-linking of poly(l-glutamic acid). Macromol. Biosci. 2011, 11, 427–434, doi:10.1002/mabi.201000389.
[25]
John, A.W.; Lovina, J.F. Solid-phase syntheses of peptoids using fmoc-protected N-substituted glycines: The synthesis of (retro)peptoids of leu-enkephalin and substance P. Chem. Eur. J. 1998, 4, 1570–1580, doi:10.1002/(SICI)1521-3765(19980807)4:8<1570::AID-CHEM1570>3.0.CO;2-2.