全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Polymers  2014 

Synthesis of Gelatin-γ-Polyglutamic Acid-Based Hydrogel for the In Vitro Controlled Release of Epigallocatechin Gallate (EGCG) from Camellia sinensis

DOI: 10.3390/polym6010039

Keywords: ionic hydrogel, EGCG, gelatin, γ-PGA, in vitro drug release

Full-Text   Cite this paper   Add to My Lib

Abstract:

The antioxidant property and other health benefits of the most abundant catechin, epigallocatechin gallate (EGCG), are limited because of poor stability and permeability across intestine. Protecting the EGCG from the harsh gastrointestinal tract (GIT) environment can help to increase its bioavailability following oral administration. In this study, EGCG was loaded to hydrogel prepared from ionic interaction between an optimized concentration of gelatin and γ-polyglutamic acid (γ-PGA), with ethylcarbodiimide (EDC) as the crosslinker. Physicochemical characterization of hydrogel was done using Fourier transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The dependence of the swelling degree (SD) of the hydrogel to the amount of gelatin, γ-PGA, EDC, swelling time and pH was determined. A high SD of the crosslinked hydrogel was noted at pH 4.5, 6.8 and 9.0 compared to pH 7.4, which describes pH-responsiveness. Approximately 67% of the EGCG from the prepared solution was loaded to the hydrogel after 12 h post-loading, in which loading efficiency was related to the amount of EDC. The in vitro release profile of EGCG at pH 1.2, 6.8 and 7.4, simulating GIT conditions, resulted in different sustained release curves. Wherein, the released EGCG was not degraded instantly compared to free-EGCG at controlled temperature of 37 °C at different pH monitored against time. Therefore, this study proves the potential of pH-responsive gelatin-γ-PGA-based hydrogel as a biopolymer vehicle to deliver EGCG.

References

[1]  Perva-Uzunali?, A.; ?kerget, M.; Knez, ?.; Weinreich, B.; Otto, F.; Grüner, S. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 2006, 96, 597–605, doi:10.1016/j.foodchem.2005.03.015.
[2]  Jun, X.; Shuo, Z.; Bingbing, L.; Rui, Z.; Ye, L.; Deji, S.; Guofeng, Z. Separation of major catechins from green tea by ultrahigh pressure extraction. Int. J. Pharm. 2010, 386, 229–231, doi:10.1016/j.ijpharm.2009.10.035.
[3]  Nagle, D.G.; Ferreira, D.; Zhou, Y.D. Epigallocatechin-3-gallate (egcg): Chemical and biomedical perspectives. Phytochemistry 2006, 67, 1849–1855, doi:10.1016/j.phytochem.2006.06.020.
[4]  Ho, H.-Y.; Cheng, M.-L.; Weng, S.-F.; Leu, Y.-L.; Chiu, D.T.-Y. Antiviral effect of epigallocatechin gallate on enterovirus 71. J. Agric. Food Chem. 2009, 57, 6140–6147, doi:10.1021/jf901128u.
[5]  Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 2009, 9, 429–439, doi:10.1038/nrc2641.
[6]  Row, K.H.; Jin, Y. Recovery of catechin compounds from korean tea by solvent extraction. Bioresour. Technol. 2006, 97, 790–793, doi:10.1016/j.biortech.2005.04.001.
[7]  Dugas, A.J., Jr.; Casta?eda-Acosta, J.; Bonin, G.C.; Price, K.L.; Fischer, N.H.; Winston, G.W. Evaluation of the total peroxyl radical-scavenging capacity of flavonoids:? Structure-activity relationships. J. Nat. Prod. 2000, 63, 327–331, doi:10.1021/np990352n.
[8]  Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956, doi:10.1016/0891-5849(95)02227-9.
[9]  Yang, C.S.; Sang, S.; Lambert, J.D.; Lee, M.-J. Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol. Nutr. Food Res. 2008, 52, S139–S151.
[10]  Zhu, M.; Chen, Y.; Li, R.C. Oral absorption and bioavailability of tea catechins. Planta Med. 2000, 66, 444–447, doi:10.1055/s-2000-8599.
[11]  Green, R.J.; Murphy, A.S.; Schulz, B.; Watkins, B.A.; Ferruzzi, M.G. Common tea formulations modulate in vitro digestive recovery of green tea catechins. Mol. Nutr. Food Res. 2007, 51, 1152–1162, doi:10.1002/mnfr.200700086.
[12]  Huo, C.; Wan, S.B.; Lam, W.H.; Li, L.; Wang, Z.; Landis-Piwowar, K.R.; Chen, D.; Dou, Q.P.; Chan, T.H. The challenge of developing green tea polyphenols as therapeutic agents. Inflammopharmacology 2008, 16, 248–252, doi:10.1007/s10787-008-8031-x.
[13]  Wang, X.; Wang, Y.-W.; Huang, Q. Enhancing Stability and Oral Bioavailability of Polyphenols Using Nanoemulsions. In Micro/Nanoencapsulation of Active Food Ingredients; American Chemical Society: Washington, DC, USA, 2009; Volume 1007, pp. 198–212.
[14]  Lee, J.-S.; Chung, D.; Lee, H.G. Optimization of calcium pectinate gel beads for sustained-release of catechin using response surface methodology. Int. J. Biol. Macromol. 2008, 42, 340–347, doi:10.1016/j.ijbiomac.2008.01.003.
[15]  Renò, F.; Carniato, F.; Rizzi, M.; Marchese, L.; Laus, M.; Antonioli, D. Poss/gelatin-polyglutamic acid hydrogel composites: Preparation, biological and mechanical characterization. J. Appl. Polym. Sci. 2013, 129, 699–706, doi:10.1002/app.38789.
[16]  Einerson, N.J.; Stevens, K.R.; Kao, W.J. Synthesis and physicochemical analysis of gelatin-based hydrogels for drug carrier matrices. Biomaterials 2003, 24, 509–523, doi:10.1016/S0142-9612(02)00369-1.
[17]  Layman, H.; Spiga, M.-G.; Brooks, T.; Pham, S.; Webster, K.A.; Andreopoulos, F.M. The effect of the controlled release of basic fibroblast growth factor from ionic gelatin-based hydrogels on angiogenesis in a murine critical limb ischemic model. Biomaterials 2007, 28, 2646–2654, doi:10.1016/j.biomaterials.2007.01.044.
[18]  Silva, A.K.A.; Richard, C.; Bessodes, M.; Scherman, D.; Merten, O.-W. Growth factor delivery approaches in hydrogels. Biomacromolecules 2008, 10, 9–18.
[19]  Young, S.; Wong, M.; Tabata, Y.; Mikos, A.G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control. Release 2005, 109, 256–274, doi:10.1016/j.jconrel.2005.09.023.
[20]  Tang, D.-W.; Yu, S.-H.; Ho, Y.-C.; Huang, B.-Q.; Tsai, G.-J.; Hsieh, H.-Y.; Sung, H.-W.; Mi, F.-L. Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocoll. 2013, 30, 33–41, doi:10.1016/j.foodhyd.2012.04.014.
[21]  Magnin, D.; Lefebvre, J.; Chornet, E.; Dumitriu, S. Physicochemical and structural characterization of a polyionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohydr. Polym. 2004, 55, 437–453, doi:10.1016/j.carbpol.2003.11.013.
[22]  Chen, C.-H.; Hsieh, M.-F.; Ho, Y.-N.; Huang, C.-M.; Lee, J.-S.; Yang, C.-Y.; Chang, Y. Enhancement of catechin skin permeation via a newly fabricated mpeg-pcl-graft-2-hydroxycellulose membrane. J. Membr. Sci. 2011, 371, 134–140, doi:10.1016/j.memsci.2011.01.029.
[23]  Philip, A.K.; Philip, B. Colon targeted drug delivery systems: A review on primary and novel approaches. Oman Med. J. 2010, 25, 70–78, doi:10.5001/omj.2010.24.
[24]  Sigma-Aldrich, Product Information Sheet: Gelatin; Sigma-Aldrich, Inc.: St. Louis, MO, USA, 2013.
[25]  Gorgieva, S.; Kokol, V. Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspective. In Biomaterials Applications for Nanomedicine; Pignatello, R., Ed.; InTech: Rijeka, Croatia, 2011; p. 458.
[26]  Shih, I.-L.; Van, Y.-T. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 2001, 79, 207–225, doi:10.1016/S0960-8524(01)00074-8.
[27]  Lin, C.-C.; Metters, A.T. Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv. Drug Deliv. Rev. 2006, 58, 1379–1408, doi:10.1016/j.addr.2006.09.004.
[28]  Hsu, S.-H.; Lin, C.-H. The properties of gelatin-poly (γ-glutamic acid) hydrogels as biological glues. Biorheology 2007, 44, 17–28.
[29]  Rathna, G.V.N. Gelatin hydrogels: Enhanced biocompatibility, drug release and cell viability. J. Mater. Sci: Mater. Med. 2008, 19, 2351–2358, doi:10.1007/s10856-007-3334-9.
[30]  Lin, Y.-H.; Lin, J.-H.; Peng, S.-F.; Yeh, C.-L.; Chen, W.-C.; Chang, T.-L.; Liu, M.-J.; Lai, C.-H. Multifunctional gentamicin supplementation of poly(γ-glutamic acid)-based hydrogels for wound dressing application. J. Appl. Polym. Sci. 2011, 120, 1057–1068, doi:10.1002/app.33249.
[31]  Pinotti, A.; García, M.A.; Martino, M.N.; Zaritzky, N.E. Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocoll. 2007, 21, 66–72, doi:10.1016/j.foodhyd.2006.02.001.
[32]  Chen, Y.-C.; Yu, S.-H.; Tsai, G.-J.; Tang, D.-W.; Mi, F.-L.; Peng, Y.-P. Novel technology for the preparation of self-assembled catechin/gelatin nanoparticles and their characterization. J. Agric. Food Chem. 2010, 58, 6728–6734.
[33]  Wanchoo, R.K.; Sharma, P.K. Viscometric study on the compatibility of some water-soluble polymer—Polymer mixtures. Eur. Polym. J. 2003, 39, 1481–1490.
[34]  Zhu, B.; Li, J.; He, Y.; Yoshie, N.; Inoue, Y. Hydrogen-bonding interaction and crystalline morphology in the binary blends of poly(ε-caprolactone) and polyphenol catechin. Macromol. Biosci. 2003, 3, 684–693, doi:10.1002/mabi.200350034.
[35]  Ho, G.-H.; Ho, T.-I.; Hsieh, K.-H.; Su, Y.-C.; Lin, P.-Y.; Yang, J.; Yang, K.-H.; Yang, S.-C. γ-polyglutamic acid produced by Bacillus subtilis (natto): Structural characteristics, chemical properties, and biological functionalities. J. Chin. Chem. Soc. 2006, 53, 1363–1384.
[36]  Fakirov, S. Gelatin and Gelatin-Based Biodegradable Composites: Manufacturing, Properties, and Biodegradation Behavior. In Handbook of Engineering Biopolymers: Homopolymers, Blends, and Composites; Fakirov, S., Bhattacharya, D., Eds.; Carl Hanser Verlag: München, Germany, 2007.
[37]  Amin, S.; Rajabnezhad, S.; Kohli, K. Hydrogels as potential drug delivery systems. Sci. Res. Essay 2009, 3, 1175–1183.
[38]  Bajpai, S.K.; Dubey, S. Synthesis and swelling kinetics of a pH-sensitive terpolymeric hydrogel system. Iran. Polym. J. 2004, 13, 189–203.
[39]  Xing, L.; Dawei, C.; Liping, X.; Rongqing, Z. Oral colon-specific drug delivery for bee venom peptide: Development of a coated calcium alginate gel beads-entrapped liposome. J. Control. Release 2003, 93, 293–300, doi:10.1016/j.jconrel.2003.08.019.
[40]  Siepmann, J.; Peppas, N.A. Higuchi equation: Derivation, applications, use and misuse. Int. J. Pharm. 2011, 418, 6–12, doi:10.1016/j.ijpharm.2011.03.051.
[41]  Hu, B.; Ting, Y.W.; Yang, X.Q.; Tang, W.P.; Zeng, X.X.; Huang, Q.R. Nanochemoprevention by encapsulation of (?)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chem. Commun. 2012, 48, 2421–2423, doi:10.1039/c2cc17295j.
[42]  Shutava, T.G.; Balkundi, S.S.; Vangala, P.; Steffan, J.J.; Bigelow, R.L.; Cardelli, J.A.; O’Neal, D.P.; Lvov, Y.M. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 2009, 3, 1877–1885, doi:10.1021/nn900451a.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133