An analytical approach with the help of numerical simulations based on the equivalent constraint model (ECM) was proposed to investigate the progressive failure behavior of symmetric fiber-reinforced composite laminates damaged by transverse ply cracking. A fracture criterion was developed to describe the initiation and propagation of the transverse ply cracking. This work was also concerned with a statistical distributions of the critical fracture toughness values with due consideration given to the scale size effect. The Monte Carlo simulation technique coupled with statistical analysis was applied to study the progressive cracking behaviors of composite structures, by considering the effects of lamina properties and lay-up configurations. The results deduced from the numerical procedure were in good agreement with the experimental results obtained for laminated composites formed by unidirectional fiber reinforced laminae with different orientations.
References
[1]
Kashtalyan, M.; Soutis, C. Stiffness and fracture analysis of laminated composites with off-axis ply matrix cracking. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1262–1269, doi:10.1016/j.compositesa.2006.07.001.
[2]
Zhang, J.Q.; Fan, J.H.; Hermann, K.P. Delaminations induced by constrained transverse cracking in symmetric composite laminates. Int. J. Solids Struct. 1999, 36, 813–846, doi:10.1016/S0020-7683(97)00325-9.
[3]
Okabe, T.; Nishikawa, M.; Takeda, N. Numerical modeling of progressive damage in fiber reinforced plastic cross-ply laminates. Compos. Sci. Technol. 2008, 68, 2282–2289, doi:10.1016/j.compscitech.2008.04.021.
[4]
Reifsnider, K.L.; Stinchcomb, W.W. A Critical-Element Model of the Residual Strength and Life of Fatigue-Loaded Composite Coupons. In Composite Materials: Fatigue and Fracture; Hahn, H.T., Ed.; ASTM STP 907, American Society for Testing and Materials: Philadephia, PA, USA, 1986; pp. 298–313.
[5]
Kashtalyan, M.; Soutis, C. The effect of delaminations induced by transverse cracks and splits on stiffness properties of composite laminates. Compos. Part A Appl. Sci. Manuf. 2000, 31, 107–119, doi:10.1016/S1359-835X(99)00066-4.
[6]
Hashin, Z. Analysis of cracked laminates: A variational approach. Mech. Mater. 1985, 4, 121–136, doi:10.1016/0167-6636(85)90011-0.
[7]
Kang, K.W.; Lim, D.M.; Kim, J.K. Probabilistic analysis for the fatigue life of carbon/epoxy laminates. Compos. Struct. 2008, 85, 258–264, doi:10.1016/j.compstruct.2008.01.003.
[8]
Liu, P.F.; Chu, J.K.; Liu, Y.L.; Zheng, J.Y. A study on the failure mechanism of carbon fiber/epoxy composite laminates using acoustic emission. Mater. Des. 2012, 37, 228–235, doi:10.1016/j.matdes.2011.12.015.
[9]
Alfaro, M.V.C.; Suiker, A.S.J.; Borst, R.D.; Remmers, J.J.C. Analysis of fracture and delamina-tion in laminates using 3D numerical modelling. Eng. Fract. Mech. 2009, 76, 761–780, doi:10.1016/j.engfracmech.2008.09.002.
[10]
Lee, J.W.; Daniel, I.M. Progressive transverse cracking of cross ply composite laminates. J. Compos. Mater. 1990, 24, 1225–1243, doi:10.1177/002199839002401108.
[11]
Joffe, R.; Krasnikovs, A.; Varna, J. COD-based simulation of transverse cracking and stiffness reduction in [S/90n]s laminates. Compos. Sci. Technol. 2001, 61, 637–656, doi:10.1016/S0266-3538(00)00172-X.
[12]
Berthelot, J.M.; Le Corre, J.F. Statistical analysis of the progression of transverse cracking and delamination in cross-ply laminates. Compos. Sci. Technol. 2000, 60, 2659–2669, doi:10.1016/S0266-3538(00)00140-8.
[13]
Hinton, M.J.; Kaddour, A.S.; Soden, P.D. Evaluation of failure prediction in composite laminates: Background to ‘part B’ of the exercise. Compos. Sci. Technol. 2002, 62, 1481–1488, doi:10.1016/S0266-3538(02)00094-5.
[14]
Soden, P.D.; Hinton, M.J.; Kaddour, A.S. Biaxial test results for strength and deformation of a range of E-glass and carbon fiber reinforced composite laminates: Failure exercise benchmark data. Compos. Sci. Technol. 2002, 62, 1489–1514, doi:10.1016/S0266-3538(02)00093-3.
[15]
Liu, K.S.; Tsai, S.W. A progressive quadratic failure criterion for a laminate. Compos. Sci. Technol. 1998, 58, 1023–1032, doi:10.1016/S0266-3538(96)00141-8.
[16]
Hinton, M.J.; Kaddour, A.S.; Soden, P.D. A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence. Compos. Sci. Technol. 2002, 62, 1725–1797, doi:10.1016/S0266-3538(02)00125-2.
[17]
Maimi, P.; Camanho, P.P.; Mayugo, J.A.; Turon, A. Matrix cracking and delamination in laminated composites. Part I: Ply constitutive law, first ply failure and onset of delamination. Mech Mater. 2011, 43, 169–185, doi:10.1016/j.mechmat.2010.12.003.
[18]
Zhang, J.Q.; Herrmann, K.P. Stiffness degradation induced by multiplayer intralaminar cracking in composite laminates. Compos. Part A Appl. Sci. Manuf. 1999, 30, 683–706, doi:10.1016/S1359-835X(98)00106-7.
[19]
Zhang, J.Q.; Herrmann, K.P.; Fan, J.H. A theoretical model of matrix cracking in composite laminates under thermomechanical loading. Acta Mech. Solida Sinica 2001, 14, 299–305.
[20]
Wang, F.; Zhang, J.Q.; Li, L.; Chen, Z.Q. ECM-Based Statistical Simulation of Progressive Failure in Symmetric Laminates Damaged by Transverse Ply Cracking. In Proceedings of the 13th International Conference on Fracture, Beijing, China, 16–21 June 2013; Yu, S.W., Feng, X.Q., Eds.; China Science Literature Publishing House: Hongkong, 2013; p. 226.
[21]
Zhang, J.Q.; Soutis, C.; Fan, J.H. Effects of matrix cracking and hygrothermal stresses on the strain energy release rate for edge delamination in composite laminates. Composites 1994, 25, 27–35, doi:10.1016/0010-4361(94)90064-7.
[22]
Zhang, J.Q.; Fan, J.H.; Soutis, C. Analysis of multiple cracking in [±θm/90n]s composite laminates. Part Ι: In-plane stiffness properties. Composites 1992, 23, 291–298, doi:10.1016/0010-4361(92)90327-Q.
[23]
Zhang, J.Q.; Fan, J.H.; Soutis, C. Analysis of multiple cracking in [±θm/90n]s composite laminates. Part II: Development of transverse ply crack. Composites 1992, 23, 299–304, doi:10.1016/0010-4361(92)90328-R.
[24]
Kashtalyan, M.; Soutis, C. Stiffness degradation in cross-ply laminates damaged by transverse cracking and splitting. Compos. Part A Appl. Sci. Manuf. 2000, 31, 335–351, doi:10.1016/S1359-835X(99)00077-9.
[25]
Herrmann, K.P.; Zhang, J.Q.; Fan, J.H. An energy-based statistical model for multiple fractures in composite laminates. Int. J. Multiscale Comput. Eng. 2003, 1, 327–347, doi:10.1615/IntJMultCompEng.v1.i4.20.
[26]
Wang, F.; Zeng, X.G.; Zhang, J.Q. Predictive approach to the failure of composite laminates with equivalent constraint model. Acta Mech. Solida Sinica 2010, 23, 230–247.
[27]
Irwin, G.R. Fracture. In Handbuch der Physik VI; Flugge, S., Ed.; Springer-Verlag: Berlin, Germany, 1958; pp. 551–590. (in German).
[28]
Ba?ant, Z.P. Size effect on structural strength: A review. Arch. Appl. Mech. 1999, 69, 703–725, doi:10.1007/s004190050252.
[29]
Sutherland, L.S.; Shenoi, R.A.; Lewis, S.M. Size and scale effects in composites: I. Literature review. Compos. Sci. Technol. 1999, 59, 209–220, doi:10.1016/S0266-3538(98)00065-7.
[30]
Joffe, R.; Varna, J. Analytical modeling of stiffness reduction in symmetric and balanced laminates due to cracks in 90° layers. Compos. Sci. Technol. 1999, 59, 1641–1652, doi:10.1016/S0266-3538(99)00025-1.
[31]
Han, Y.M.; Hahn, H.T. Ply cracking and property degradations of symmetric balanced laminates under general in-plane loading. Compos. Sci. Technol. 1989, 35, 377–397, doi:10.1016/0266-3538(89)90059-6.
[32]
Smith, P.A.; Wood, J.R. Poisson’s ratio as a damage parameter in the static tensile loading of simple crossply laminates. Compos. Sci. Technol. 1990, 38, 85–93, doi:10.1016/0266-3538(90)90073-E.
[33]
Wang, F.; Li, L.; Chen, Z.Q.; Zeng, X.G. Statistical modeling for the accumulation of transverse matrix cracking in cross-ply laminates. Polym. Compos. 2012, 33, 912–917, doi:10.1002/pc.22211.
[34]
Zou, Z.H. Structure and Properties of Composites, 1st ed. ed.; Science Press: Beijing, China, 1999; pp. 402–526.
[35]
McCartney, L.N. Energy-based prediction of progressive ply cracking and strength of general symmetric laminates using an homogenisation method. Compos. Part A: Appl. Sci. Manuf. 2005, 36, 119–128.