全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Polymers  2014 

Synthesis and Characterization of Biodegradable Amphiphilic Star and Y-Shaped Block Copolymers as Potential Carriers for Vinorelbine

DOI: 10.3390/polym6010214

Keywords: polymeric drug delivery systems, micelle, nano formulation, targeted cancer therapy, vinorelbine, amphiphilic block copolymer, star-shaped polymer, Y-shaped polymer

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two amphiphilic block copolymers using hydrophobic poly(ε-caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) were successfully synthesized. One of them is an (A- b-B) 4 type star polymer [(PCL- b-PEG) 4] and the other one is a Y-shaped PEG–(PCL) 2. A star-shaped polymer (PCL- b-PEG) 4 was prepared by ring-opening polymerization (ROP) of ε-caprolactone continued by click reaction of (PCL-azide) 4 and PEG-alkyne. The synthesis of Y-shaped PEG–(PCL) 2 block copolymer was carried out via Diels-Alder click reaction of a furan protected maleimide end-functionalized PEG (PEG-MI) with an anthracene end-functionalized PCL following the ROP of ε-caprolactone. The characterization of micelles is carried out using both materials in aqueous media as drug delivery vehicles, which showed satisfying results and enhanced the cytotoxic effect of the anti-cancer drug vinorelbine (VLB). However, micelles consisted of Y-shaped unimers were found to be more convenient for delivery of hydrophobic drugs such as VLB because they formed in lower concentration, carrying a higher amount of drugs and owing a monomodal distribution. We concluded that the free tails of hydrophobic chains in Y-shaped block copolymer facilitate the assembly of amphiphilic material in water to form micelles.

References

[1]  Rosler, A.; Vandermeulen, G.W.M.; Klok, H.A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev.?2001, 53, 95–108, doi:10.1016/S0169-409X(01)00222-8.
[2]  Kwon, G.S.; Okano, T. Polymeric micelles as new drug carriers. Adv. Drug Deliv. Rev.?1996, 21, 107–116, doi:10.1016/S0169-409X(96)00401-2.
[3]  Smart, T.; Lomas, H.; Massignani, M.; Flores-Merino, M.V.; Perez, L.R.; Battaglia, G. Block copolymer nanostructures. Nano Today?2008, 3, 38–46, doi:10.1016/S1748-0132(08)70043-4.
[4]  Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm.?2008, 5, 505–515, doi:10.1021/mp800051m.
[5]  Maeda, H. Macromolecular therapeutics in cancer treatment: The EPR effect and beyond. J. Control. Release?2012, 164, 138–144, doi:10.1016/j.jconrel.2012.04.038.
[6]  Danhier, F.; Feron, O.; Preat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release?2010, 148, 135–146, doi:10.1016/j.jconrel.2010.08.027.
[7]  Wang, F.; Bronich, T.K.; Kabanov, A.V.; Rauh, R.D.; Roovers, J. Synthesis and characterization of star poly(epsilon-caprolactone)-b-poly(ethylene glycol) and poly(l-lactide)-b-poly(ethylene glycol) copolymers: Evaluation as drug delivery carriers. Bioconjug. Chem.?2008, 19, 1423–1429, doi:10.1021/bc7004285.
[8]  Semple, S.C.; Leone, R.; Wang, J.; Leng, E.C.; Klimuk, S.K.; Eisenhardt, M.L.; Yuan, Z.-N.; Edwards, K.; Maurer, N.; Hope, M.J.; et al. Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. J. Pharm. Sci.?2005, 94, 1024–1038, doi:10.1002/jps.20332.
[9]  Zheng, C.; Qiu, L.; Yao, X.; Zhu, K. Novel micelles from graft polyphosphazenes as potential anti-cancer drug delivery systems: Drug encapsulation and in vitro evaluation. Int. J. Pharm.?2009, 373, 133–140, doi:10.1016/j.ijpharm.2009.01.025.
[10]  Kim, J.H.; Emoto, K.; Iijima, M.; Nagasaki, Y.; Aoyagi, T.; Okano, T.; Sakurai, Y.; Kataoka, K. Core-stabilized polymeric micelle as potential drug carrier: Increased solubilization of taxol. Polym. Adv. Technol.?1999, 10, 647–654, doi:10.1002/(SICI)1099-1581(199911)10:11<647::AID-PAT918>3.0.CO;2-Y.
[11]  Liu, H.B.; Jiang, A.; Guo, J.A.; Uhrich, K.E. Unimolecular micelles: Synthesis and characterization of amphiphilic polymer systems. J. Polym. Sci. A Polym. Chem.?1999, 37, 703–711, doi:10.1002/(SICI)1099-0518(19990315)37:6<703::AID-POLA5>3.0.CO;2-O.
[12]  Kim, K.H.; Cui, G.H.; Lim, H.J.; Huh, J.; Ahn, C.H.; Jo, W.H. Synthesis and micellization of star-shaped poly(ethylene glycol)-block-poly(epsilon-caprolactone). Macromol. Chem. Phys.?2004, 205, 1684–1692, doi:10.1002/macp.200400084.
[13]  Deng, M.X.; Chen, X.S.; Piao, L.H.; Zhang, X.F.; Dai, Z.L.; Jing, X.B. Synthesis of four-armed poly(epsilon-caprolactone)-block-poly(ethylene oxide) by diethylzinc catalyst. J. Polym. Sci. A Polym. Chem.?2004, 42, 950–959, doi:10.1002/pola.11052.
[14]  Zeng, F.Q.; Lee, H.; Chidiac, M.; Allen, C. Synthesis and characterization of six-arm star poly(δ-valerolactone)-block-methoxy poly(ethylene glycol) copolymers. Biomacromolecules?2005, 6, 2140–2149.
[15]  Roovers, J.; Toporowski, P.M.; Douglas, J. Thermodynamic properties of dilute and semidilute solutions of regular star polymers. Macromolecules?1995, 28, 7064–7070, doi:10.1021/ma00125a005.
[16]  Iijima, M.; Nagasaki, Y.; Okada, T.; Kato, M.; Kataoka, K. Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers. Macromolecules?1999, 32, 1140–1146, doi:10.1021/ma9815962.
[17]  Wang, F.; Bronich, T.K.; Kabanov, A.V.; Rauh, R.D.; Roovers, J. Synthesis and evaluation of a star amphiphilic block copolymer from poly(ε-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjug. Chem.?2005, 16, 397–405, doi:10.1021/bc049784m.
[18]  Nystrom, A.M.; Fadeel, B. Safety assessment of nanomaterials: Implications for nanomedicine. J. Control. Release?2012, 161, 403–408, doi:10.1016/j.jconrel.2012.01.027.
[19]  Jia, L.; Yan, L.; Li, Y. Synthesis of biodegradable amphiphilic Y-shaped block co-polymers via Ring-opening polymerization for drug delivery. J. Biomater. Sci. Polym. Ed.?2011, 22, 1197–1213.
[20]  Zhang, H.-H.; Huang, Z.-Q.; Sun, B.-W.; Guo, J.-X.; Wang, J.-L.; Chen, Y.-Q. Y-shaped poly(ethylene glycol) and poly(trimethylene carbonate) amphiphilic copolymer: Synthesis and for drug delivery. J. Polym. Sci. A Polym. Chem.?2008, 46, 8131–8140, doi:10.1002/pola.23110.
[21]  Rao, J.; Zhang, Y.; Zhang, J.; Liu, S. Facile preparation of well-defined AB2Y-shaped miktoarm star polypeptide copolymer via the combination of ring-opening polymerization and click chemistry. Biomacromolecules?2008, 9, 2586–2593, doi:10.1021/bm800462q.
[22]  Sun, J.; Chen, X.; Guo, J.; Shi, Q.; Xie, Z.; Jing, X. Synthesis and self-assembly of a novel Y-shaped copolymer with a helical polypeptide arm. Polymer?2009, 50, 455–461, doi:10.1016/j.polymer.2008.11.015.
[23]  Kohno, E.; Murase, S.; Nishikata, M.; Okamura, N.; Matzno, S.; Kuwahara, T.; Matsuyama, K. Methods of preventing vinorelbine-induced phlebitis: An experimental study in rabbits. Int. J. Med. Sci.?2008, 5, 218–223.
[24]  Taylor, R.L.; Williams, D.M.; Craven, P.C.; Graybill, J.R.; Drutz, D.J.; Magee, W.E. Amphotericin-B in liposomes—A novel therapy for histoplasmosis. Am. Rev. Respir. Dis.?1982, 125, 610–611.
[25]  Koukoulitsa, C.; Kyrikou, I.; Demetzos, C.; Mavromoustakos, T. The role of the anticancer drug vinorelbine in lipid bilayers using differential scanning calorimetry and molecular modeling. Chem. Phys. Lipids?2006, 144, 85–95, doi:10.1016/j.chemphyslip.2006.07.002.
[26]  Tunca, U.; Ozyurek, Z.; Erdogan, T.; Hizal, G. Novel miktofunctional initiator for the preparation of an ABC-type miktoarm star polymer via a combination of controlled polymerization techniques. J. Polym. Sci. A Polym. Chem.?2004, 42, 4228–4236, doi:10.1002/pola.20284.
[27]  Durmaz, H.; Dag, A.; Altintas, O.; Erdogan, T.; Hizal, G.; Tunca, U. One-pot synthesis of ABC type triblock copolymers via in situ click [3 + 2] and Diels-Alder [4 + 2] reactions. Macromolecules?2006, 40, 191–198.
[28]  Altintas, O.; Hizal, G.; Tunca, U. Synthesis of an ABCD 4-miktoarm star quaterpolymer through a Diels-Alder click reaction. Des. Monomers Polym.?2009, 12, 83–98, doi:10.1163/156855508X391158.
[29]  Dag, A.; Durmaz, H.; Hizal, G.; Tunca, U. Preparation of 3-arm star polymers (A3) via Diels-Alder click reaction. J. Polym. Sci. A Polym. Chem.?2008, 46, 302–313, doi:10.1002/pola.22381.
[30]  Ihre, H.; Hult, A.; Fréchet, J.M.J.; Gitsov, I. Double-stage convergent approach for the synthesis of functionalized dendritic aliphatic polyesters based on 2,2-bis(hydroxymethyl)propionic acid. Macromolecules?1998, 31, 4061–4068, doi:10.1021/ma9718762.
[31]  Ward, G.A. Measurements of binding thermodynamics in drug discovery. Drug Discov. Today?2005, 10, 1543–1551, doi:10.1016/S1359-6446(05)03610-X.
[32]  Lv, Q.; Yu, A.; Xi, Y.; Li, H.; Song, Z.; Cui, J.; Cao, F.; Zhai, G. Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int. J. Pharm.?2009, 372, 191–198, doi:10.1016/j.ijpharm.2009.01.014.
[33]  Markovsky, E.; Koroukhov, N.; Golomb, G. Additive-free albumin nanoparticles of alendronate for attenuating inflammation through monocyte inhibition. Nanomedicine?2007, 2, 545–553, doi:10.2217/17435889.2.4.545.
[34]  Zhou, X.J.; Placidi, M.; Rahmani, R. Uptake and metabolism of vinca alkaloids by freshly isolated human hepatocytes in suspension. Anticancer Res.?1994, 14, 1017–1022.
[35]  Alkan Onyuksel, H.; Ramakrishnan, S.; Chai, H.B.; Pezzuto, J.M. A mixed micellar formulation suitable for the parenteral administration of taxol. Pharm. Res.?1994, 11, 206–212, doi:10.1023/A:1018943021705.
[36]  Onyuksel, H.; Mohanty, P.S.; Rubinstein, I. VIP-grafted sterically stabilized phospholipid nanomicellar 17-allylamino-17-demethoxy geldanamycin: A novel targeted nanomedicine for breast cancer. Int. J. Pharm.?2009, 365, 157–161, doi:10.1016/j.ijpharm.2008.08.024.
[37]  Dagar, S.; Krishnadas, A.; Rubinstein, I.; Blend, M.J.; Onyuksel, H. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: In vivo studies. J. Control. Release?2003, 91, 123–133, doi:10.1016/S0168-3659(03)00242-6.
[38]  Krishnadas, A.; Rubinstein, I.; Onyuksel, H. Sterically stabilized phospholipid mixed micelles: In vitro evaluation as a novel carrier for water-insoluble drugs. Pharm. Res.?2003, 20, 297–302, doi:10.1023/A:1022243709003.
[39]  Ashok, B.; Arleth, L.; Hjelm, R.P.; Rubinstein, I.; Onyuksel, H. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: Effects of PEG chain length and PC incorporation. J. Pharm. Sci.?2004, 93, 2476–2487, doi:10.1002/jps.20150.
[40]  Onyuksel, H.; Koo, O.M.; Sethi, V.; Rubinstein, I. Sterically stabilized phospholipid micellar human vasoactive intestinal peptide: A novel disease-modifying drug for rheumatoid arthritis. Arthritis Rheum.?2005, 52, S262–S262, doi:10.1002/art.20718.
[41]  Cho, Y.W.; Lee, J.; Lee, S.C.; Huh, K.M.; Park, K. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J. Control. Release?2004, 97, 249–257, doi:10.1016/j.jconrel.2004.03.013.
[42]  Morris, P.G.; Fornier, M.N. Microtubule active agents: Beyond the taxane frontier. Clin. Cancer Res.?2008, 14, 7167–7172, doi:10.1158/1078-0432.CCR-08-0169.
[43]  Michalowski, C.B.; Guterres, S.S.; Dalla Costa, T. Microdialysis for evaluating the entrapment and release of a lipophilic drug from nanoparticles. J. Pharm. Biomed. Anal.?2004, 35, 1093–1100, doi:10.1016/j.jpba.2004.04.002.
[44]  Johnston, M.J.W.; Semple, S.C.; Klimuk, S.K.; Edwards, K.; Eisenhardt, M.L.; Leng, E.C.; Karlsson, G.; Yanko, D.; Cullis, P.R. Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochim. Biophys. Acta Biomembr.?2006, 1758, 55–64.
[45]  Onyuksel, H.; Jeon, E.; Rubinstein, I. Nanomicellar paclitaxel increases cytotoxicity of multidrug resistant breast cancer cells. Cancer Lett.?2009, 274, 327–330, doi:10.1016/j.canlet.2008.09.041.
[46]  Allahverdiyev, A.; Duran, N.; Ozguven, M.; Koltas, S. Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine?2004, 11, 657–661, doi:10.1016/j.phymed.2003.07.014.
[47]  Kalyanasundaram, K.; Thomas, J.K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc.?1977, 99, 2039–2044, doi:10.1021/ja00449a004.
[48]  Allen, C.; Maysinger, D.; Eisenberg, A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B Biointerfaces?1999, 16, 3–27, doi:10.1016/S0927-7765(99)00058-2.
[49]  Vagberg, L.J.M.; Cogan, K.A.; Gast, A.P. Light-scattering study of starlike polymeric micelles. Macromolecules?1991, 24, 1670–1677, doi:10.1021/ma00007a033.
[50]  Cogan, K.A.; Gast, A.P. Effect of water on diblock copolymers in oil–Large aggregates, micelles, and microemulsions. Macromolecules?1990, 23, 745–753, doi:10.1021/ma00205a009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413