全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Processes  2013 

Thermo-Responsive Hydrogels for Stimuli-Responsive Membranes

DOI: 10.3390/pr1030238

Keywords: membrane coating, thermo-responsive material, positive volume-phase transition, hydrogel, stimuli-responsive membrane

Full-Text   Cite this paper   Add to My Lib

Abstract:

Composite membranes with stimuli-responsive properties can be made by coating a thermo-responsive hydrogel onto a micro- or macroporous support. These hydrogels undergo a temperature induced volume-phase transition, which contributes towards the composite membrane’s stimuli-responsive properties. This paper reviews research done on complimentary forms of temperature responsive “thermophilic” hydrogels, those exhibiting positive volume-phase transitions in aqueous solvent. The influences of intermolecular forces on the mechanism of phase-transition are discussed along with case examples of typical thermophilic hydrogels.

References

[1]  Mah, K.Z.; Ghosh, R. Paper-based composite lyotropic salt-responsive membranes for chromatographic separation of proteins. J. Membr. Sci. 2010, 360, 149–154, doi:10.1016/j.memsci.2010.05.016.
[2]  Yu, D.; Chen, X.; Pelton, R.; Ghosh, R. Paper-PEG-based membranes for hydrophobic interaction chromatography: Purification of monoclonal antibody. Biotechnol. Bioeng. 2008, 99, 1434–1442, doi:10.1002/bit.21680.
[3]  Kuroki, H.; Ito, T.; Ohashi, H.; Tamaki, T.; Yamaguchi, T. Biomolecule-recognition gating membrane using biomolecular cross-linking and polymer phase transition. Anal. Chem. 2011, 83, 9226–9229, doi:10.1021/ac202629h.
[4]  Rattan, S.; Sehgal, T. Stimuli-responsive membranes through peroxidation radiation-induced grafting of 2-hydroxyethyl methacrylate (2-HEMA) onto isotactic polypropylene film (IPP). J. Radioanal. Nuclear Chem. 2012, 293, 107–118, doi:10.1007/s10967-012-1728-8.
[5]  Zhao, Y.-H.; Wee, K.-H.; Bai, R. A novel electrolyte-responsive membrane with tunable permeation selectivity for protein purification. ACS Appl. Mater. Interfaces 2009, 2, 203–211, doi:10.1021/am900654d.
[6]  Chu, L.-Y.; Niitsuma, T.; Yamaguchi, T.; Nakao, S.-i. Thermoresponsive transport through porous membranes with grafted PNIPAM gates. AICHE J. 2003, 49, 896–909, doi:10.1002/aic.690490409.
[7]  Liang, L.; Feng, X.; Peurrung, L.; Viswanathan, V. Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes. J. Membr. Sci. 1999, 162, 235–246, doi:10.1016/S0376-7388(99)00145-3.
[8]  Park, Y.S.; Ito, Y.; Imanishi, Y. Permeation control through porous membranes immobilized with thermosensitive polymer. Langmuir 1998, 14, 910–914, doi:10.1021/la970866r.
[9]  Ying, L.; Kang, E.T.; Neoh, K.G. Synthesis and characterization of poly(N-isopropylacrylamide)-graft-poly(vinylidene fluoride) copolymers and temperature-sensitive membranes. Langmuir 2002, 18, 6416–6423, doi:10.1021/la020241f.
[10]  Zhang, K.; Wu, X.Y. Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials 2004, 25, 5281–5291, doi:10.1016/j.biomaterials.2003.12.032.
[11]  Kwon, I.C.; Bae, Y.H.; Kim, S.W. Electrically credible polymer gel for controlled release of drugs. Nature 1991, 354, 291–293, doi:10.1038/354291a0.
[12]  Ly, Y.; Cheng, Y.-L. Electrically-modulated variable permeability liquid crystalline polymeric membrane. J. Membr. Sci. 1993, 77, 99–112, doi:10.1016/0376-7388(93)85238-R.
[13]  Tanaka, T.; Nishio, I.; Sun, S.-T.; Ueno-Nishio, S. Collapse of gels in an electric field. Science 1982, 218, 467–469.
[14]  Briscoe, B.; Luckham, P.; Zhu, S. On the effects of water solvency towards non–ionic polymers. Proc. Math. Phys. Eng. Sci. 1999, 455, 737–756, doi:10.1098/rspa.1999.0332.
[15]  Tanaka, T. Collapse of gels and the critical endpoint. Phys. Rev. Lett. 1978, 40, 820–823, doi:10.1103/PhysRevLett.40.820.
[16]  Kontturi, K.; Mafé, S.; Manzanares, J.A.; Svarfvar, B.L.; Viinikka, P. Modeling of the salt and pH effects on the permeability of grafted porous membranes. Macromolecules 1996, 29, 5740–5746, doi:10.1021/ma960501y.
[17]  Schulz, D.N.; Peiffer, D.G.; Agarwal, P.K.; Larabee, J.; Kaladas, J.J.; Soni, L.; Handwerker, B.; Garner, R.T. Phase behavior and solution properties of sulphobetaine polymers. Polymer 1986, 27, 1734–1742, doi:10.1016/0032-3861(86)90269-7.
[18]  Siegel, R.A.; Firestone, C.A. pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules 1988, 21, 3254–3259, doi:10.1021/ma00189a021.
[19]  Zhou, X.; Weng, L.; Chen, Q.; Zhang, J.; Shen, D.; Li, Z.; Shao, M.; Xu, J. Investigation of pH sensitivity of poly(acrylic acid-co-acrylamide) hydrogel. Polym. Int. 2003, 52, 1153–1157, doi:10.1002/pi.1207.
[20]  Cartier, S.; Horbett, T.A.; Ratner, B.D. Glucose-sensitive membrane coated porous filters for control of hydraulic permeability and insulin delivery from a pressurized reservoir. J. Membr. Sci. 1995, 106, 17–24, doi:10.1016/0376-7388(95)00073-L.
[21]  Chu, L.-Y.; Li, Y.; Zhu, J.-H.; Wang, H.-D.; Liang, Y.-J. Control of pore size and permeability of a glucose-responsive gating membrane for insulin delivery. J. Control. Release 2004, 97, 43–53, doi:10.1016/j.jconrel.2004.02.026.
[22]  Chu, L.; Xie, R.; Ju, X. Stimuli-responsive membranes: Smart tools for controllable mass-transfer and separation processes. Chin. J. Chem. Eng. 2011, 19, 891–903, doi:10.1016/S1004-9541(11)60070-0.
[23]  Jeon, G.; Yang, S.Y.; Kim, J.K. Functional nanoporous membranes for drug delivery. J. Mater. Chem. 2012, 22, 14814, doi:10.1039/c2jm32430j.
[24]  Flory, P.J. Priciples of Polymer Chemistry; Cornell University Press: Ithica, NY, USA, 1953.
[25]  Rees, D.A. Polysaccharide Shapes; Chapman and Hall: London, UK, 1977.
[26]  Tanaka, T. Phase Transitions of Gels. In Polyelectrolyte Gels; American Chemical Society: Cambridge, MA, USA, 1992; pp. 1–21.
[27]  Azzaroni, O.; Brown, A.A.; Huck, W.T.S. UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angew. Chem. 2006, 118, 1802–1806, doi:10.1002/ange.200503264.
[28]  Georgiev, G.S.; Mincheva, Z.P.; Georgieva, V.T. Temperature-sensitive polyzwitterionic gels. Macromol. Symp. 2001, 164, 301–312, doi:10.1002/1521-3900(200102)164:1<301::AID-MASY301>3.0.CO;2-P.
[29]  Katono, H.; Maruyama, A.; Sanui, K.; Ogata, N.; Okano, T.; Sakurai, Y. Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly (acrylic acid). J. Control. Release 1991, 16, 215–227, doi:10.1016/0168-3659(91)90045-F.
[30]  Seuring, J.; Agarwal, S. Non-ionic homo- and copolymers with h-donor and h-acceptor units with an UCST in water. Macromol. Chem. Phys. 2010, 211, 2109–2117, doi:10.1002/macp.201000147.
[31]  Tanaka, T.; Sun, S.-T.; Nishio, I.; Swislow, G.; Shah, A. Phase transitions in ionic gels. Phys. Rev. Lett. 1980, 45, 1636–1639, doi:10.1103/PhysRevLett.45.1636.
[32]  Malcolm, G.N.; Rowlinson, J.S. Thermodynamic properties of aqueous solutions of polyethylene glycol, polypropylene glycol and dioxane. Trans. Faraday Soc. 1957, 53, 921–931, doi:10.1039/tf9575300921.
[33]  Heskins, M.; Guillet, J.E. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Part A 1968, 2, 1441–1455, doi:10.1080/10601326808051910.
[34]  Haas, H.C.; Schuler, N.W. Thermally reversible homopolymer gel systems. J. Polym. Sci. Part B 1964, 2, 1095–1096, doi:10.1002/pol.1964.110021203.
[35]  Schild, H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Progr. Polym. Sci. 1992, 17, 163–249, doi:10.1016/0079-6700(92)90023-R.
[36]  Aoki, T.; Kawashima, M.; Katono, H.; Sanui, K.; Ogata, N.; Okano, T.; Sakurai, Y. Temperature-responsive interpenetrating polymer networks constructed with poly(acrylic acid) and poly(N,N-dimthylacrylamide). Macromolecules 1994, 27, 947–952, doi:10.1021/ma00082a010.
[37]  Gil, E.S.; Hudson, S.M. Stimuli-reponsive polymers and their bioconjugates. Progr. Polym. Sci. 2004, 29, 1173–1222, doi:10.1016/j.progpolymsci.2004.08.003.
[38]  Nath, N.; Chilkoti, A. Creating “smart” surfaces using stimuli responsive polymers. Adv. Mater. 2002, 14, 1243–1247, doi:10.1002/1521-4095(20020903)14:17<1243::AID-ADMA1243>3.0.CO;2-M.
[39]  Urban, A.M.; Urban, M.W. Stimuli-Responsive Macromolecules and Polymeric Coatings. In Stimuli-ReponsivePolymeric Films and Coatings; Urban, M.W., Ed.; American Chemical Society: Washington, DC, USA, 2005; pp. 1–25.
[40]  Yalkowsky, S.H. Solubility and Solubilization in Aqueous Media; American Chemical Society: Washington, DC, USA, 1999; Volume 1, p. 480.
[41]  Tanaka, T. Phase transitions in gels and a single polymer. Polymer 1979, 20, 1404–1412, doi:10.1016/0032-3861(79)90281-7.
[42]  Matsuo, E.S.; Tanaka, T. Kinetics of discontinuous volume-phase transition of gels. J. Chem. Phys. 1988, 89, 1695–1703, doi:10.1063/1.455115.
[43]  Rubinstein, M.; Dobrynin, A.V. Associations leading to formation of reversible networks and gels. Curr. Opin. Colloid Interface Sci. 1999, 4, 83–87, doi:10.1016/S1359-0294(99)00013-8.
[44]  Day, J.; Robb, I. Thermodynamic parameters of polyacrylamides in water. Polymer 1981, 22, 1530–1533, doi:10.1016/0032-3861(81)90324-4.
[45]  Eisenberg, D.S.; Kauzmann, W. The Structure and Properties of Water. In Oxford Classic Texts in the Physical Sciences; Clarendon Press: Oxford, UK, 2005.
[46]  Garay, M.T.; Llamas, M.C.; Iglesias, E. Study of polymer-polymer complexes and blends of poly(N-isopropylacrylamide) with poly(carboxylic acid): 1. Poly(acrylic acid) and poly(methacrylic acid). Polymer 1997, 38, 5091–5096, doi:10.1016/S0032-3861(97)00060-8.
[47]  Moelbert, S.; de Los Rios, P. Hydrophobic interaction model for upper and lower critical solution temperatures. Macromolecules 2003, 36, 5845–5853, doi:10.1021/ma025890c.
[48]  Lowe, A.B.; McCormick, C.L. Synthesis and solution properties of zwitterionic polymers. Chem. Rev. 2002, 102, 4177–4190, doi:10.1021/cr020371t.
[49]  Soto, V.M.M.; Galin, J.C. Poly(sulphopropylbetaines): 2. Dilute solution properties. Polymer 1984, 25, 254–262, doi:10.1016/0032-3861(84)90334-3.
[50]  Kuo, W.H.; Wang, M.J.; Chien, H.W.; Wei, T.C.; Lee, C.; Tsai, W.B. Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation. Biomacromolecules 2011, 12, 4348–4356, doi:10.1021/bm2013185.
[51]  Weaver, J.V.M.; Armes, S.P.; Bütün, V. Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer. Chem. Commun. 2002, 18, 2122–2123, doi:10.1039/b207251n.
[52]  Zhang, Z.; Chao, T.; Chen, S.; Jiang, S. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 2006, 22, 10072–10077, doi:10.1021/la062175d.
[53]  Huglin, M.B.; Radwan, M.A. Unperturbed dimensions of a zwitterionic polymethacrylate. Polym. Int. 1991, 26, 97–104, doi:10.1002/pi.4990260208.
[54]  Kamenova, I.; Harrass, M.; Lehmann, B.; Friedrich, K.; Ivanov, I.; Georgiev, G. Swelling of the zwitterionic copolymer networks and dehydration of their hydrogels. Macromol. Symp. 2007, 254, 122–127.
[55]  Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry-application to a phenolic resin. J. Polym. Sci. 1964, 6C, 183–195.
[56]  Kasák, P.; Kroneková, Z.; Krupa, I.; Lacík, I. Zwitterionic hydrogels crosslinked with novel zwitterionic crosslinkers: Synthesis and characterization. Polymer 2011, 52, 3011–3020, doi:10.1016/j.polymer.2011.04.056.
[57]  Chang, Y.; Yandi, W.; Chen, W.Y.; Shih, Y.J.; Yang, C.C.; Chang, Y.; Ling, Q.D.; Higuchi, A. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules 2010, 11, 1101–1110, doi:10.1021/bm100093g.
[58]  Singhal, R.; Tomar, R.; Nagpal, A. Effect of cross-linker and initiator concentration on the swelling behavior and network parameters of superabsorbent hydrogels based on acrylamide and acrylic acid. Int. J. Plast. Technol. 2009, 13, 22–37, doi:10.1007/s12588-009-0004-4.
[59]  Xie, J.; Liu, X.; Liang, J.; Luo, Y. Swelling properties of superabsorbent poly(acrylic acid-co-acrylamide) with different crosslinkers. J. Appl. Polym. Sci. 2009, 112, 602–608, doi:10.1002/app.29463.
[60]  Baker, B.A.; Murff, R.L.; Milam, V.T. Tailoring the mechanical properties of polyacrylamide-based hydrogels. Polymer 2010, 51, 2207–2214, doi:10.1016/j.polymer.2010.02.022.
[61]  Zhu, X.F.; Yang, M.; Zhang, H.X.; Nie, Y.J. The synthesis and characteristic properties of poly (AAc-co-AAm). Adv. Mater. Res. 2011, 213, 534–538, doi:10.4028/www.scientific.net/AMR.213.534.
[62]  Klenina, O.V.; Fain, E.G. Phase separation in the system polyacrylic acid-polyacrylamide-water. Polym. Sci. USSR 1981, 23, 1439–1446, doi:10.1016/0032-3950(81)90111-8.
[63]  Osada, Y. Equilibrium study of polymer–polymer complexation of poly(methacrylic acid) and poly(acrylic acid) with complementary polymers through cooperative hydrogen bonding. J. Polym. Sci. Polym. Chem. Ed. 1979, 17, 3485–3498, doi:10.1002/pol.1979.170171107.
[64]  Painter, P.C.; Graf, J.; Coleman, M.M. A lattice model describing hydrogen bonding in polymer mixtures. J. Chem. Phys. 1990, 92, 6166–6174, doi:10.1063/1.458340.
[65]  Klenina, O.V.; Fain, E.G. Phase separation in the hydrolyzed polyacrylamide-water-hydrochloric acid system. Kolloidnyi Zhurnal 1980, 42, 558–561.
[66]  Ilmain, F.; Tanaka, T.; Kokufuta, E. Volume transition in a gel driven by hydrogen bonding. Nature 1991, 349, 400–401, doi:10.1038/349400a0.
[67]  Cecil, R. Model system for hydrophobic interactions. Nature 1967, 214, 369–370, doi:10.1038/214369a0.
[68]  Yang, M.; Liu, C.; Li, Z.; Gao, G.; Liu, F. Temperature-responsive properties of poly(acrylic acid-co-acrylamide) hydrophobic association hydrogels with high mechanical strength. Macromolecules 2010, 43, 10645–10651, doi:10.1021/ma1022555.
[69]  Sasase, H.; Aoki, T.; Katono, H.; Sanui, K.; Ogata, N.; Ohta, R.; Kondo, T.; Okano, T.; Sakurai, Y. Regulation of temperature-response swelling behavior of interpenetrating polymer networks composed of hydrogen bonding polymers. Die Makromol. Chem. Rapid Commun. 1992, 13, 577–581, doi:10.1002/marc.1992.030131208.
[70]  Katono, H.; Sanui, K.; Ogata, N.; Okano, T.; Sakurai, Y. Drug release off behavior and deswelling kinetics of thermo-responsive IPNs composed of poly(acrylamide-co-butyl methacrylate) and poly(acrylic acid). Polym. J. 1991, 23, 1179–1189, doi:10.1295/polymj.23.1179.
[71]  Singhal, R.; Gupta, I. A study on the effect of butyl methacrylate content on swelling and controlled-release behavior of poly (acrylamide-co-butyl-methacrylate-co-acrylic acid) environment-responsive hydrogels. Int. J. Polym. Mater. 2010, 59, 757–776, doi:10.1080/00914037.2010.483216.
[72]  Shibanuma, T.; Aoki, T.; Sanui, K.; Ogata, N.; Kikuchi, A.; Sakurai, Y.; Okano, T. Thermosensitive phase-separation behavior of poly(acrylic acid)-graft-poly(N,N-dimethylacrylamide) aqueous solution. Macromolecules 1999, 33, 444–450.
[73]  McCormick, C.L.; Sumerlin, B.S.; Lokitz, B.S.; Stempka, J.E. RAFT-synthesized diblock and triblock copolymers: Thermally-induced supramolecular assembly in aqueous media. Soft Matter 2008, 8, 1760–1773.
[74]  Duran, S.; Solpan, D.; Güven, O. Synthesis and characterization of acrylamide-acrylic acid hydrogels and adsorption of some textile dyes. Nuclear Instrum. Methods Phys. Res. Sect. B 1999, 151, 196–199, doi:10.1016/S0168-583X(99)00151-2.
[75]  Katime, I.; Novoa, R.; de Apodaca, E.D.; Mendizábal, E.; Puig, J. Theophylline release from poly(acrylic acid-co-acrylamide) hydrogels. Polym. Test. 1999, 18, 559–566, doi:10.1016/S0142-9418(98)00054-3.
[76]  Chu, L.-Y.; Li, Y.; Zhu, J.-H.; Chen, W.-M. Negatively thermoresponsive membranes with functional gates driven by zipper-type hydrogen-bonding interactions. Angew. Chem. Int. Ed. 2005, 44, 2124–2127, doi:10.1002/anie.200462687.
[77]  Hochberg, A.; Tanaka, T.; Nicoli, D. Spinodal line and critical point of an acrylamide gel. Phys. Rev. Lett. 1979, 43, 217–219, doi:10.1103/PhysRevLett.43.217.
[78]  Haas, H.C.; Moreau, R.D.; Schuler, N.W. Synthetic thermally reversible gel systems. II. J. Polym. Sci. Polym. Phys. Ed. 1967, 5, 915–927.
[79]  Haas, H.C.; Chiklis, C.K.; Moreau, R.D. Synthetic thermally reversible gel systems. III. J. Polym. Sci. Part A 1970, 8, 1131–1145, doi:10.1002/pol.1970.150080509.
[80]  Haas, H.C.; MacDonald, R.L.; Schuler, A.N. Synthetic thermally reversible gel systems. IV. J. Polym. Sci. Part A 1970, 8, 1213–1226, doi:10.1002/pol.1970.150080514.
[81]  Haas, H.C.; Manning, M.J.; Mach, M.H. Synthetic thermally reversible gel systems. V. J. Polym. Sci. Part A 1970, 8, 1725–1730, doi:10.1002/pol.1970.150080711.
[82]  Haas, H.C.; MacDonald, R.L.; Schuler, A.N. Synthetic thermally reversible gel systems. VI. J. Polym. Sci. Part A 1970, 8, 3405–3415, doi:10.1002/pol.1970.150081203.
[83]  Seuring, J.; Agarwal, S.; Harms, K. N-Acryloyl glycinamide. Acta Crystallogr. Sect. E 2011, 67, o2170, doi:10.1107/S1600536811029758.
[84]  Nagaoka, H.; Ohnishi, N.; Eguchi, M. Thermoresponsive Polymer and Production Method Thereof; Chisso Corporation: Alexandria, VA, USA, 2007.
[85]  Ohnishi, N.; Furukawa, H.; Kataoka, K.; Ueno, K. Polymer Having an Upper Critical Solution Temperature; Nathional Institute of Advanced Industrial Science and Technology, Chisso Corporation: Alexandria, VA, USA, 2007.
[86]  Glatzel, S.; Badi, N.; P?ch, M.; Laschewsky, A.; Lutzm, J.-F. Well-defined synthetic polymers with a protein-like gelation behavior in water. Chem. Commun. 2010, 46, 4517–2519, doi:10.1039/c0cc00038h.
[87]  Seuring, J.; Bayer, F.M.; Huber, K.; Agarwal, S. Upper critical solution temperature of poly(N-acryloyl glycinamide) in water: A concealed property. Macromolecules 2011, 44, 8962–8971, doi:10.1021/ma201528r.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133