全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Processes  2013 

CHO Quasispecies—Implications for Manufacturing Processes

DOI: 10.3390/pr1030296

Keywords: Quasispecies, CHO, protein manufacturing, genome remodeling, clonal screening

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chinese hamster ovary (CHO) cells are a source of multi-ton quantities of protein pharmaceuticals. They are, however, immortalized cells, characterized by a high degree of genetic and phenotypic diversity. As is known for any biological system, this diversity is enhanced by selective forces when laboratories (no sharing of gene pools) grow cells under (diverse) conditions that are practical and useful. CHO cells have been used in culture for more than 50 years, and various lines of cells are available and have been used in manufacturing. This article tries to represent, in a cursory way, the history of CHO cells, particularly the origin and subsequent fate of key cell lines. It is proposed that the name CHO represents many different cell types, based on their inherent genetic diversity and their dynamic rate of genetic change. The continuing remodeling of genomic structure in clonal or non-clonal cell populations, particularly due to the non-standardized culture conditions in hundreds of different labs renders CHO cells a typical case for “quasispecies”. This term was coined for families of related (genomic) sequences exposed to high mutation rate environments where a large fraction of offspring is expected to carry one or more mutations. The implications of the quasispecies concept for CHO cells used in protein manufacturing processes are significant. CHO genomics/transcriptomics may provide only limited insights when done on one or two “old” and poorly characterized CHO strains. In contrast, screening of clonal cell lines, derived from a well-defined starting material, possibly within a given academic or industrial environment, may reveal a more narrow diversity of phenotypes with respect to physiological/metabolic activities and, thus, allow more precise and reliable predictions of the potential of a clone for high-yielding manufacturing processes.

References

[1]  Xu, X.; Nagarajan, H.; Lewis, N.E.; Pan, S.; Cai, Z.; Liu, X.; Chen, W.; Xie, M.; Wang, W.; Hammond, S.; et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 2011, 29, 735–741, doi:10.1038/nbt.1932.
[2]  Eigen, M.; Schuster, P. The Hypercycle. A Principle of Natural Self-Organization. Part A: Emergence of the Hypercycle. Naturwissenschaften 1977, 64, 541–565, doi:10.1007/BF00450633.
[3]  Eigen, M.; Schuster, P. The Hypercycle. A Principle of Natural Self-Organisation. Part B: The Abstract Hypercycle. In Naturwissenschaften; 1978; Volume 65, pp. 7–41.
[4]  Eigen, M.; Schuster, P. The Hypercycle. A Principle of Natural Self-Organisation. Part C: The Realistic Hypercycle. Naturwissenschaften 1978, 65, 341–369, doi:10.1007/BF00439699.
[5]  Molecular Cell Genetics; Gottesman, M.M., Ed.; John Wiley and Sons: New York, NY, USA, 1985.
[6]  Barnes, D.; Sato, G. Methods for growth of cultured cells in serum-free medium. Anal. Biochem. 1980, 102, 255–270, doi:10.1016/0003-2697(80)90151-7.
[7]  Gasser, F.; Mulsant, P.; Gillios, M. Long-term multiplication of the Chinese Hamster Ovary (CHO) cell line in a serum-free medium. In Vitro Cell. Dev. Biol. 1985, 21, 589–592.
[8]  Ham, R.G. Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc. Natl. Acad. Sci. USA 1965, 53, 288–293, doi:10.1073/pnas.53.2.288.
[9]  Hamilton, W.G.; Ham, R.G. Clonal growth of Chinese Hamster cell lines in protein free media. In Vitro 1977, 13, 537–547, doi:10.1007/BF02627849.
[10]  Taub, M.; Chuman, L.; Saier, M.H.; Sato, G. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum free medium. Proc. Natl. Acad. Sci. USA 1979, 76, 3338–3342, doi:10.1073/pnas.76.7.3338.
[11]  Puck, T.T. The genetics of somatic mammalian cells. Adv. Biology. Med. Physics 1957, 5, 75–101.
[12]  Puck, T.T. Development of the Chinese Hamster Ovary (CHO) Cell for Use in Somatic Cell Genetics. In Molecular Cell Genetics; Gottesman, M.M., Ed.; John Wiley and Sons: New York, NY, USA, 1985; pp. 37–64.
[13]  Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621, doi:10.1016/0014-4827(61)90192-6.
[14]  Urlaub, G.; Chasin, L.A. Isolation of Chinese Hamster Cell Mutants Lacking Dihydrofolate Reductase Activity. Proc. Natl. Acad. Sci. 1980, 77, 4216–4220, doi:10.1073/pnas.77.7.4216.
[15]  Subramani, S.; Mulligan, R.; Berg, P. Expression of the mouse dihydrofolate reductase complementary deoxyribonucleic acid in simian virus 40 vectors. Mol. Cel. Biol. 1981, 1, 854–864.
[16]  Scahill, S.J.; Devos, R.; Van der Heyden, J.; Fires, W. Expression and characterization of the product of a human immune interferon cDNA gene in Chinese Hamster Ovary cells. Proc. Natl. Acad. Sci. 1983, 80, 4654–4658, doi:10.1073/pnas.80.15.4654.
[17]  Flintoff, W.F.; Davidson, S.V.; Siminovitch, L. Isolation and partial characterization of three methotrexate-resistant phenotypes form Chinese Hamster Ovary cells. Somat. Cell Genet. 1976, 2, 245–261, doi:10.1007/BF01538963.
[18]  Siminovitch, L. On the Nature of Hereditable Variation in Cultured Somatic Cells. In Cell; 1976; Volume 7, pp. 1–11.
[19]  Urlaub, G.; K?s, E.; Carothers, A.M.; Chasin, L.A. Deletion of the diploid dihydrofolate reductase locus form cultured mammalian cells. Cell 1983, 33, 405–412, doi:10.1016/0092-8674(83)90422-1.
[20]  Urlaub, G.; Mitchell, P.J.; Kas, E.; Chasin, L.A.; Fumanage, V.L.; Myoda, T.T.; Hamlin, J. Effect of gamma rays at the dihydrofolate reductase locus: Deletions and inversions. Somat. Cell Mol. Genet. 1986, 12, 555–566, doi:10.1007/BF01671941.
[21]  Kaufman, R.J.; Schimke, R.T. Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line. Mol. Cell. Biol. 1981, 12, 1069–1076.
[22]  Kaufman, R.J.; Wasley, L.C.; Spiliotes, A.J.; Gossels, S.D.; Latt, S.A.; Larsen, G.R.; Kay, R. M. Coamplification and co-expression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese Hamster Ovary cells. Mol. Cell. Biol. 1985, 5, 1750–1759.
[23]  Weidle, U.H.; Buckel, P.; Wienberg, J. Amplified expression constructs for human tissue type plasminogen activator in CHO cells: Instability in the absence of selective pressure. Gene 1988, 66, 193–203, doi:10.1016/0378-1119(88)90356-3.
[24]  Biedler, J.L.; Spengler, B.A. A novel chromosome abnormality in human neuroblastoma and antifolate resistant Chinese hamster cell lines in culture. J. Natl. Cancer Inst. 1976, 57, 683–689.
[25]  Pallavicini, M.G.; DeTeresa, P.S.; Rosette, C.; Gray, J.W.; Wurm, F.M. Effects of Methotrexate (MTX) on Transfected DNA Stability in Mammalian Cells. Mol. Cell. Biol. 1990, 10, 401–404.
[26]  Wurm, F.M. Integration, amplification and stability of plasmid sequences in CHO cell cultures. Biologicals 1990, 18, 159–164, doi:10.1016/1045-1056(90)90002-H.
[27]  Bebbington, C.R.; Renner, G.; Thomson, S.; King, D.; Abrams, D.; Yarranton, G.T. High-level expression of a recombinant antibody from myeloma cells using a glutamine syntheses gene as an amplifiable selectable marker. Biotechnology 1992, 10, 169–175, doi:10.1038/nbt0292-169.
[28]  Puck, T.T.; Sanders, P.; Petersen, D. Life cycle analysis of mammalian cells. II Cells from the Chinese Hamster Ovary grown in suspension culture. Biophys. J. 1964, 4, 441–450, doi:10.1016/S0006-3495(64)86794-1.
[29]  Thompson, L.H.; Baker, R.M. Isolation of Mutants of Cultured Mammalian Cells. In Methods in Cell Biology; Prescot, D.M., Ed.; publisher: New York, NY, USA, 1973; Volume 6, pp. 209–281.
[30]  Hsu, T.S. Chromosomal Evolution in Cell Populations. Int. Rev. Cytol. 1961, 12, 69–161, doi:10.1016/S0074-7696(08)60539-2.
[31]  Deaven, L.L.; Peterson, D.F. The Chromosomes of CHO, an Aneuploid Chinese Hamster Cell Line: G-Band, C-Band and Autoradiographic Analyses. Chromosoma (Berl.) 1973, 41, 129–144, doi:10.1007/BF00319690.
[32]  Wurm, F.M.; Hacker, D.L. First CHO genome. Nat. Biotechnol. 2011, 29, 718–719, doi:10.1038/nbt.1943.
[33]  Cao, Y.; Kimura, S.; Itoi, T.; Honda, K.; Ohtake, H.; Omasa, T. Construction of BAC-based physical map and analysis of chromosome rearrangement in Chinese Hamster Ovary cell lines. Biotechnol. Bioeng. 2011, 112, 476–484.
[34]  Hazelwood, E. Molecular analysis of clonal variation in GS-CHO cell lines. PhD Thesis, University of Manchester, 2006.
[35]  Derouazi, M.; Martinet, D.; Besuchet, N.; Schmutz, N.; Flaction, R.; Wicht, M.; Bertschinger, M.; Hacker, D.L.; Beckmann, J.S.; Wurm, F.M. Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem. Biophys. Res. Commun. 2006, 340, 1069–1077, doi:10.1016/j.bbrc.2005.12.111.
[36]  Landry, J.; Pyl, P.T.; Rausch, T.; Zichner, T.; Tekkedil, M.M.; Stütz, A.M.; Jauch, A.; Aiyar, R.S.; Pau, G.; Delhomme, N.; et al. The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda). 2013, 3, 1213–1224, doi:10.1534/g3.113.005777.
[37]  Gey, G.O.; Coffman, W.D.; Kubicek, M.T. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 1952, 12, 264–265.
[38]  Meyerson, M.; Pellman, D. Cancer genomes evolve by pulverizing single chromosomes. Cell 2011, 144, 9–10, doi:10.1016/j.cell.2010.12.025.
[39]  Liu, P.; Erez, A.; Sreenath Nagamani, S.C.; Dhar, S.U.; Kolodziejska, K.E.; Dharmandhikari, A.V.; Lance Cooper, M.; Wiszniewska, J.; Zhang, F.; Withers, M.A.; et al. Dhromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 2011, 146, 889–903, doi:10.1016/j.cell.2011.07.042.
[40]  Lewis, N.E.; Liu, X.; Li, Y.; Nagarajan, H.; Yerganian, G.; O’Brien, E.; Bordbar, A.; Roth, A.M.; Rosenbloom, J.; Bian, Ch.; et al. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat. Biotechnol. 2013, 31, 759–767, doi:10.1038/nbt.2624.
[41]  Brinkrolf, K.; Rupp, O.; Laux, H.; Kollin, F.; Ernst, W.; Linke, B.; Kofler, R.; Romand, S.; Hesse, F.; Budach, W.E.; et al. Chinese hamster genome sequenced from sorted chromosomes. Nat. Biotechnol. 2013, 31, 694–695, doi:10.1038/nbt.2645.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413