全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Processes  2013 

Improved Large-Scale Process Cooling Operation through Energy Optimization

DOI: 10.3390/pr1030312

Keywords: energy, chiller plant, optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a study based on real plant data collected from chiller plants at the University of Texas at Austin. It highlights the advantages of operating the cooling processes based on an optimal strategy. A multi-component model is developed for the entire cooling process network. The model is used to formulate and solve a multi-period optimal chiller loading problem, posed as a mixed-integer nonlinear programming (MINLP) problem. The results showed that an average energy savings of 8.57% could be achieved using optimal chiller loading as compared to the historical energy consumption data from the plant. The scope of the optimization problem was expanded by including a chilled water thermal storage in the cooling system. The effect of optimal thermal energy storage operation on the net electric power consumption by the cooling system was studied. The results include a hypothetical scenario where the campus purchases electricity at wholesale market prices and an optimal hour-by-hour operating strategy is computed to use the thermal energy storage tank.

References

[1]  DOE. Energy Efficiency Trends in Residential and Commercial Buildings; US Department of Energy: Washington, DC, USA, 2008.
[2]  Browne, M.W.; Bansal, P.K. Steady-state model of centrifugal liquid chillers: Modèle pour des refroidisseurs de liquide centrifuges en régime permanent. Int. J. Refrig. 1998, 21, 343–358, doi:10.1016/S0140-7007(98)00003-6.
[3]  Le, C.V.; Bansal, P.K.; Tedford, J.D. Three-zone system simulation model of a multiple-chiller plant. Appl. Therm. Eng. 2004, 24, 1995–2015, doi:10.1016/j.applthermaleng.2004.02.011.
[4]  Monfet, D.; Zmeureanu, R. Ongoing commissioning of water-cooled electric chillers using benchmarking models. Appl. Energy 2012, 92, 99–108, doi:10.1016/j.apenergy.2011.10.019.
[5]  Gordon, J.M.; Ng, K.C.; Chua, H.T. Centrifugal chillers: Thermodynamic modeling and a diagnostic case study. Int. J. Refrig. 1995, 18, 253–257, doi:10.1016/0140-7007(95)96863-2.
[6]  Lee, T.-S.; Liao, K.-Y.; Lu, W.-C. Evaluation of the suitability of empirically-based models for predicting energy performance of centrifugal water chillers with variable chilled water flow. Appl. Energy 2012, 93, 583–595, doi:10.1016/j.apenergy.2011.12.001.
[7]  Ng, K.C.; Chua, H.T.; Ong, W.; Lee, S.S.; Gordon, J.M. Diagnostics and optimization of reciprocating chillers: Theory and experiment. Appl. Therm. Eng. 1997, 17, 263–276, doi:10.1016/S1359-4311(96)00031-2.
[8]  Ehyaei, M.A.; Mozafari, A.; Ahmadi, A.; Esmaili, P.; Shayesteh, M.; Sarkhosh, M.; Dincer, I. Potential use of cold thermal energy storage systems for better efficiency and cost effectiveness. Energy Build. 2010, 42, 2296–2303, doi:10.1016/j.enbuild.2010.07.013.
[9]  Cole, W.J.; Powell, K.M.; Edgar, T.F. Optimization and advanced control of thermal energy storage systems. Rev. Chem. Eng. 2012, 28, 81–99.
[10]  Cole, W.J.; Rhodes, J.D.; Powell, K.M.; Edgar, T.F. Turbine inlet cooling with thermal energy storage. Int. J. Energy Res. 2013, doi:10.1002/er.3014.
[11]  Tveit, T.-M.; Savola, T.; Gebremedhin, A.; Fogelholm, C.-J. Multi-period MINLP model for optimising operation and structural changes to CHP plants in district heating networks with long-term thermal storage. Energy Convers. Manag. 2009, 50, 639–647, doi:10.1016/j.enconman.2008.10.010.
[12]  S?derman, J. Optimisation of structure and operation of district cooling networks in urban regions. Appl. Therm. Eng. 2007, 27, 2665–2676, doi:10.1016/j.applthermaleng.2007.05.004.
[13]  Hartman, T. Designing efficient systems with the equal marginal performance principle. ASHRAE 2005, 47, 64–70.
[14]  Powell, K.M.; Cole, W.J.; Ekarika, U.F.; Edgar, T.F. Optimal chiller loading in a district cooling system with thermal energy storage. Energy 2013, 50, 445–453, doi:10.1016/j.energy.2012.10.058.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413