全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Processes  2013 

Photochemical Patterning of Ionically Cross-Linked Hydrogels

DOI: 10.3390/pr1020153

Keywords: alginate, photoresist, iron, responsive hydrogel

Full-Text   Cite this paper   Add to My Lib

Abstract:

Iron(III) cross-linked alginate hydrogel incorporating sodium lactate undergoes photoinduced degradation, thus serving as a biocompatible positive photoresist suitable for photochemical patterning. Alternatively, surface etching of iron(III) cross-linked hydrogel contacting lactic acid solution can be used for controlling the thickness of the photochemical pattering. Due to biocompatibility, both of these approaches appear potentially useful for advanced manipulation with cell cultures including growing cells on the surface or entrapping them within the hydrogel.

References

[1]  Morris, E.R.; Rees, D.A.; Thom, D.; Boyd, J. Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation. Carbohydr. Res. 1978, 66, 145–154, doi:10.1016/S0008-6215(00)83247-4.
[2]  Li, L.B.; Fang, Y.P.; Vreeker, R.; Appelqvist, I. Reexamining the egg-box model in calcium-alginate gels with X-ray diffraction. Biomacromolecules 2007, 8, 464–468, doi:10.1021/bm060550a.
[3]  Donati, I.; Holtan, S.; Morch, Y.A.; Borgogna, M.; Dentini, M.; Skjak-Braek, G. New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules 2005, 6, 1031–1040, doi:10.1021/bm049306e.
[4]  Augst, A.D.; Kong, H.J.; Mooney, D.J. Alginate hydrogels as biomaterials. Macromol. Biosci. 2006, 6, 623–633, doi:10.1002/mabi.200600069.
[5]  Gombotz, W.R.; Wee, S.F. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 1998, 31, 267–285.
[6]  Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2011, 37, 106–126.
[7]  Shi, X.W.; Du, Y.M.; Sun, L.P.; Yang, J.H.; Wang, X.H.; Su, X.L. Ionically crosslinked alginate/carboxymethyl chitin beads for oral delivery of protein drugs. Macromol. Biosci. 2005, 5, 881–889, doi:10.1002/mabi.200500063.
[8]  Rowley, J.A.; Madlambayan, G.; Mooney, D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999, 20, 45–53, doi:10.1016/S0142-9612(98)00107-0.
[9]  Uludag, H.; de Vos, P.; Tresco, P.A. Technology of mammalian cell encapsulation. Adv. Drug Deliv. Rev. 2000, 42, 29–64, doi:10.1016/S0169-409X(00)00053-3.
[10]  Shapiro, L.; Cohen, S. Novel alginate sponges for cell culture and transplantation. Biomaterials 1997, 18, 583–590, doi:10.1016/S0142-9612(96)00181-0.
[11]  Kuo, C.K.; Ma, P.X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 2001, 22, 511–521, doi:10.1016/S0142-9612(00)00201-5.
[12]  Alsberg, E.; Anderson, K.W.; Albeiruti, A.; Rowley, J.A.; Mooney, D.J. Engineering growing tissues. Proc. Natl. Acad. Sci. USA 2002, 99, 12025–12030, doi:10.1073/pnas.192291499.
[13]  Bajpai, S.K.; Sharma, S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym. 2004, 59, 129–140, doi:10.1016/j.reactfunctpolym.2004.01.002.
[14]  Draget, K.I.; Braek, G.S.; Smidsrod, O. Alginic acid gels: The effect of alginate chemical composition and molecular weight. Carbohydr. Polym. 1994, 25, 31–38, doi:10.1016/0144-8617(94)90159-7.
[15]  Bouhadir, K.H.; Lee, K.Y.; Alsberg, E.; Damm, K.L.; Anderson, K.W.; Mooney, D.J. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 2001, 17, 945–950, doi:10.1021/bp010070p.
[16]  Tan, W.H.; Takeuchi, S. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 2007, 19, 2696–2701, doi:10.1002/adma.200700433.
[17]  Peirone, M.; Ross, C.J.D.; Hortelano, G.; Brash, J.L.; Chang, P.L. Encapsulation of various recombinant mammalian cell types in different alginate microcapsules. J. Biomed. Mater. Res. 1998, 42, 587–596, doi:10.1002/(SICI)1097-4636(19981215)42:4<587::AID-JBM15>3.0.CO;2-X.
[18]  Cohen, D.L.; Malone, E.; Lipson, H.; Bonassar, L.J. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006, 12, 1325–1335, doi:10.1089/ten.2006.12.1325.
[19]  Tam, T.K.; Zhou, J.; Pita, M.; Ornatska, M.; Minko, S.; Katz, E. Biochemically controlled bioelectrocatalytic interface. J. Am. Chem. Soc. 2008, 130, 10888–10889.
[20]  Jin, Z.; Guven, G.; Bocharova, V.; Halámek, J.; Tokarev, I.; Minko, S.; Melman, A.; Mandler, D.; Katz, E. Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode. ACS Appl. Mater. Interfaces 2011, 4, 466–475.
[21]  Casalbore-Miceli, G.; Yang, M.J.; Li, Y.; Zanelli, A.; Martelli, A.; Chen, S.; She, Y.; Camaioni, N. A polyelectrolyte as humidity sensing material: Influence of the preparation parameters on its sensing property. Sens. Actuator B 2006, 114, 584–590, doi:10.1016/j.snb.2005.05.023.
[22]  Ju, H.K.; Kim, S.Y.; Lee, Y.M. pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly (N-isopropylacrylamide). Polymer 2001, 42, 6851–6857, doi:10.1016/S0032-3861(01)00143-4.
[23]  Kim, S.J.; Yoon, S.G.; Lee, S.M.; Lee, J.H.; Kim, S.I. Characteristics of electrical responsive alginate/poly(diallyldimethylammonium chloride) IPN hydrogel in HCl solutions. Sens. Actuators B 2003, 96, 1–5, doi:10.1016/S0925-4005(03)00253-3.
[24]  Nishiyama, Y.; Nakamura, M.; Henmi, C.; Yamaguchi, K.; Mochizuki, S.; Nakagawa, H.; Takiura, K. Development of a three-dimensional bioprinter: Construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J. Biomech. Eng.-Trans. ASME 2009, 131, 035001:1–035001:6.
[25]  Delaney, J.T.; Liberski, A.R.; Perelaer, J.; Schubert, U.S. Reactive inkjet printing of calcium alginate hydrogel porogens—A new strategy to open-pore structured matrices with controlled geometry. Soft Matter 2010, 6, 866–869, doi:10.1039/b922888h.
[26]  Chueh, B.H.; Zheng, Y.; Torisawa, Y.S.; Hsiao, A.Y.; Ge, C.X.; Hsiong, S.; Huebsch, N.; Franceschi, R.; Mooney, D.J.; Takayama, S. Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device. Biomed. Microdevices 2010, 12, 145–151, doi:10.1007/s10544-009-9369-6.
[27]  Kloxin, A.M.; Kasko, A.M.; Salinas, C.N.; Anseth, K.S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009, 324, 59–63, doi:10.1126/science.1169494.
[28]  Kloxin, A.M.; Tibbitt, M.W.; Anseth, K.S. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat. Protoc. 2010, 5, 1867–1887, doi:10.1038/nprot.2010.139.
[29]  Wang, G.; Tong, X.; Zhao, Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 2004, 37, 8911–8917, doi:10.1021/ma048416a.
[30]  Eastoe, J.; Dominguez, M.S.; Wyatt, P.; Beeby, A.; Heenan, R.K. Properties of a stilbene-containing gemini photosurfactant: Light-triggered changes in surface tension and aggregation. Langmuir 2002, 18, 7837–7844, doi:10.1021/la0257384.
[31]  Tazuke, S.; Kurihara, S.; Yamaguchi, H.; Ikeda, T. Photochemically triggered physical amplification of photoresponsiveness. J. Phys. Chem. 1987, 91, 249–251, doi:10.1021/j100286a001.
[32]  Lee, H.I.; Wu, W.; Oh, J.K.; Mueller, L.; Sherwood, G.; Peteanu, L.; Kowalewski, T.; Matyjaszewski, K. Light-induced reversible formation of polymeric micelles. Angew. Chem.-Int. Ed. 2007, 46, 2453–2457, doi:10.1002/anie.200604278.
[33]  Luo, Y.; Shoichet, M.S. Light-activated immobilization of biomolecules to agarose hydrogels for controlled cellular response. Biomacromolecules 2004, 5, 2315–2323, doi:10.1021/bm0495811.
[34]  Brown, A.A.; Azzaroni, O.; Huck, W.T.S. Photoresponsive polymer brushes for hydrophilic patterning. Langmuir 2009, 25, 1744–1749, doi:10.1021/la8032308.
[35]  Chandra, B.; Subramaniam, R.; Mallik, S.; Srivastava, D.K. Formulation of photocleavable liposomes and the mechanism of their content release. Org. Biomol. Chem. 2006, 4, 1730–1740, doi:10.1039/b518359f.
[36]  Jiang, J.Q.; Tong, X.; Zhao, Y. A new design for light-breakable polymer micelles. J. Am. Chem. Soc. 2005, 127, 8290–8291, doi:10.1021/ja0521019.
[37]  Bisby, R.H.; Mead, C.; Morgan, C.G. Active uptake of drugs into photosensitive liposomes and rapid release on UV photolysis. Photochem. Photobiol. 2000, 72, 57–61, doi:10.1562/0031-8655(2000)072<0057:AUODIP>2.0.CO;2.
[38]  Liu, Y.C.; Le Ny, A.L.M.; Schmidt, J.; Talmon, Y.; Chmelka, B.F.; Lee, C.T. Photo-assisted gene delivery using light-responsive catanionic vesicles. Langmuir 2009, 25, 5713–5724, doi:10.1021/la803588d.
[39]  Griffin, D.R.; Kasko, A.M. Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc. 2012, 134, 13103–13107, doi:10.1021/ja305280w.
[40]  Dustin, M.L.; Colman, D.R. Neural and immunological synaptic relations. Science 2002, 298, 785–789, doi:10.1126/science.1076386.
[41]  Grakoui, A.; Bromley, S.K.; Sumen, C.; Davis, M.M.; Shaw, A.S.; Allen, P.M.; Dustin, M.L. The immunological synapse: A molecular machine controlling T cell activation. Science 1999, 285, 221–227, doi:10.1126/science.285.5425.221.
[42]  Wu, M.; Holowka, D.; Craighead, H.G.; Baird, B. Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proc. Natl. Acad. Sci. USA 2004, 101, 13798–13803, doi:10.1073/pnas.0403835101.
[43]  Jiang, X.Y.; Bruzewicz, D.A.; Wong, A.P.; Piel, M.; Whitesides, G.M. Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci. USA 2005, 102, 975–978.
[44]  Ericson, J.; Norlin, S.; Jessell, T.M.; Edlund, T. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 1998, 125, 1005–1015.
[45]  Sundberg, S.A.; Barrett, R.W.; Pirrung, M.; Lu, A.L.; Kiangsoontra, B.; Holmes, C.P. Spatially-addressable immobilization of macromolecules on solid supports. J. Am. Chem. Soc. 1995, 117, 12050–12057, doi:10.1021/ja00154a003.
[46]  Blawas, A.S.; Oliver, T.F.; Pirrung, M.C.; Reichert, W.M. Step-and-repeat photopatterning of protein features using caged-biotin–BSA: Characterization and resolution. Langmuir 1998, 14, 4243–4250, doi:10.1021/la971231v.
[47]  Holden, M.A.; Cremer, P.S. Light activated patterning of dye-labeled molecules on surfaces. J. Am. Chem. Soc. 2003, 125, 8074–8075, doi:10.1021/ja035390e.
[48]  Doh, J.; Irvine, D.J. Photogenerated polyelectrolyte bilayers from an aqueous-processible photoresist for multicomponent protein patterning. J. Am. Chem. Soc. 2004, 126, 9170–9171, doi:10.1021/ja048261m.
[49]  Edahiro, J.; Sumaru, K.; Tada, Y.; Ohi, K.; Takagi, T.; Kameda, M.; Shinbo, T.; Kanamori, T.; Yoshimi, Y. In situ control of cell adhesion using photoresponsive culture surface. Biomacromolecules 2005, 6, 970–974, doi:10.1021/bm0493382.
[50]  Wosnick, J.H.; Shoichet, M.S. Three-dimensional chemical Patterning of transparent hydrogels. Chem. Mater. 2008, 20, 55–60, doi:10.1021/cm071158m.
[51]  Hahn, M.S.; Miller, J.S.; West, J.L. Laser scanning lithography for surface micropatterning on hydrogels. Adv. Mater. 2005, 17, 2939–2942, doi:10.1002/adma.200500184.
[52]  Gillard, R.D.; McCleverty, J.A.; Wilkinson, G. Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties, & Applications of Coordination Compounds, 1st ed. ed.; Pergamon Press: Oxford, UK; New York, NY, USA, 1987.
[53]  Zelikovich, L.; Libman, J.; Shanzer, A. Molecular redox switches based on chemical triggering of iron translocation in triple-stranded helical complexes. Nature 1995, 374, 790–792, doi:10.1038/374790a0.
[54]  Fei, S.T.; Phelps, M.V.B.; Wang, Y.; Barrett, E.; Gandhi, F.; Allcock, H.R. A redox responsive polymeric gel based on ionic crosslinking. Soft Matter 2006, 2, 397–401, doi:10.1039/b516972k.
[55]  Sreeram, K.J.; Shrivastava, H.Y.; Nair, B.U. Studies on the nature of interaction of iron(III) with alginates. Biochim. Biophys. Acta 2004, 1670, 121–125, doi:10.1016/j.bbagen.2003.11.001.
[56]  Machida-Sano, I.; Matsuda, Y.; Namiki, H. In vitro adhesion of human dermal fibroblasts on iron cross-linked alginate films. Biomed. Mater. 2009, 4, 1–8.
[57]  Machida-Sano, I.; Matsuda, Y.; Namiki, H. A novel harvesting method for cultured cells using iron-cross-linked alginate films as culture substrates. Biotechnol. Appl. Biochem. 2010, 55, 1–8, doi:10.1042/BA20090215.
[58]  Hernandez, R.; Sacristan, J.; Mijangos, C. Sol/Gel transition of aqueous alginate solutions induced by Fe(2+) cations. Macromol. Chem. Phys. 2010, 211, 1254–1260, doi:10.1002/macp.200900691.
[59]  Narayanan, R.P.; Melman, G.; Letourneau, N.J.; Mendelson, N.L.; Melman, A. Photodegradable iron(III) cross-linked alginate gels. Biomacromolecules 2012, 13, 2465–2471, doi:10.1021/bm300707a.
[60]  Machida-Sano, I.; Hirakawa, M.; Matsumoto, H.; Kamada, M.; Ogawa, S.; Namiki, H. Evaluation of ionically cross-linked alginate films as culture substrates for human fibroblasts. J. Tissue Eng. Regener. Med. 2012, 6, 186.
[61]  Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351, doi:10.1016/S0142-9612(03)00340-5.
[62]  Katz, J.S.; Burdick, J.A. Light-responsive biomaterials: Development and applications. Macromol. Biosci. 2010, 10, 339–348, doi:10.1002/mabi.200900297.
[63]  Abrahamson, H.B.; Rezvani, A.B.; Brushmiller, J.G. Photochemical and spectroscopic studies of complexes, of iron(III) with citric acid and other carboxylic acids. Inorg. Chim. Acta 1994, 226, 117–127, doi:10.1016/0020-1693(94)04077-X.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133