全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Processes  2013 

Systematic Sustainable Process Design and Analysis of Biodiesel Processes

DOI: 10.3390/pr1020167

Keywords: biodiesel, superstructure, process intensification, phenomena based, simulation, design

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biodiesel is a promising fuel alternative compared to traditional diesel obtained from conventional sources such as fossil fuel. Many flowsheet alternatives exist for the production of biodiesel and therefore it is necessary to evaluate these alternatives using defined criteria and also from process intensification opportunities. This work focuses on three main aspects that have been incorporated into a systematic computer-aided framework for sustainable process design. First, the creation of a generic superstructure, which consists of all possible process alternatives based on available technology. Second, the evaluation of this superstructure for systematic screening to obtain an appropriate base case design. This is done by first reducing the search space using a sustainability analysis, which provides key indicators for process bottlenecks of different flowsheet configurations and then by further reducing the search space by using economic evaluation and life cycle assessment. Third, the determination of sustainable design with/without process intensification using a phenomena-based synthesis/design method. A detailed step by step application of the framework is highlighted through a biodiesel production case study.

References

[1]  Escobar, J.C.; Lora, E.S.; Venturini, O.J.; Yá?ez, E.E.; Castillo, E.F.; Almazan, O. Biofuels: Environment, technology and food security. Renew. Sustain. Energ. Rev. 2009, 13, 1275–1287, doi:10.1016/j.rser.2008.08.014.
[2]  Singh, A.; Pant, D.; Korres, N.E.; Nizami, A.S.; Prasad, S.; Murphy, J.D. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Bioresour. Technol. 2010, 101, 5003–5012, doi:10.1016/j.biortech.2009.11.062.
[3]  Kiss, A.A.; Bildea, C.S. A review of biodiesel production by integrated reactive separation technologies. J. Chem. Technol. Biotechnol. 2012, 87, 861–879, doi:10.1002/jctb.3785.
[4]  International Energy Statistics. Available online: http://1.usa.gov/13Or0Bn (accessed 6 March 2013).
[5]  Biomass Research & Development Initiative. Available online: http://www.esd.ornl.gov/eess/ (accessed 1 June 2013).
[6]  Lam, M.; Lee, K.; Mohamed, A. Homogenoues, heterogenous and enzymatic catalys for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol. Adv. 2010, 28, 500–518, doi:10.1016/j.biotechadv.2010.03.002.
[7]  Talebian-Kiakalaieh, A.; Amin, N.A.S.; Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Appl. Energ. 2013, 104, 683–710, doi:10.1016/j.apenergy.2012.11.061.
[8]  Leung, D.; Wu, X.; Leung, M. A review on biodiesel production using catalyzed transesterification. Appl. Energ. 2010, 87, 1083–1095, doi:10.1016/j.apenergy.2009.10.006.
[9]  Simasatitkul, L.; Arpornwichanop, A.; Gani, R. Design methodology for bio-based processing: Biodiesel and fatty alcohol production. Comput. Chem. Eng. 2013, doi:10.1016/j.compchemeng.2013.01.018.
[10]  Carvalho, A.; Gani, R.; Matos, H. Design of sustainable chemical processes: Systematic retrofit analysis generation and evaluation of alternatives. Process Saf. Environ. Prot. 2008, 86, 328–346, doi:10.1016/j.psep.2007.11.003.
[11]  Carvalho, A.; Matos, H.A.; Gani, R. Design of batch operations: Systematic methodology for generation and analysis of sustainable alternatives. Comput. Chem. Eng. 2009, 33, 2075–2090, doi:10.1016/j.compchemeng.2009.06.015.
[12]  Carvalho, A.; Matos, H.A.; Gani, R. SustainPro—A tool for systematic process analysis, generation and evaluation of sustainable design alternatives. Comput. Chem. Eng. 2013, 50, 8–27, doi:10.1016/j.compchemeng.2012.11.007.
[13]  Lutze, P.; Babi, D.K.; Woodley, J.M.; Gani, R. A phenomena based methodology for process synthesis incorporating process intensification. Ind. Eng. Chem. Res. 2013, 52, 7127–7144, doi:10.1021/ie302513y.
[14]  Yuan, Z.; Chen, B.; Gani, R. Applications of process synthesis: Moving from conventional chemical processes towards biorefinery processes. Comput. Chem. Eng. 2013, 49, 217–229, doi:10.1016/j.compchemeng.2012.09.020.
[15]  West, A.H.; Posarac, D.; Ellis, N. Assessment of four biodiesel production processes using HYSYS. Plant. Bioresour. Technol. 2008, 99, 6587–6601, doi:10.1016/j.biortech.2007.11.046.
[16]  Martín, M.; Grossmann, I.E. Simultaneous optimization and heat integration for biodiesel production from cooking oil and algae. Ind. Eng. Chem. Res. 2012, 23, 7998–8014.
[17]  Karunanithi, A.T.; Achenie, L.E.K.; Gani, R. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures. Ind. Eng. Chem. Res. 2005, 44, 4785–4797, doi:10.1021/ie049328h.
[18]  Jaksland, C.A.; Gani, R.; Lien, K.M. Separation process design and synthesis based on thermodynamic insights. Chem.Eng.Sci. 1995, 50, 511–530, doi:10.1016/0009-2509(94)00216-E.
[19]  Gani, R.; Bek-Pedersen, E. Simple new algorithm for distillation column design. AIChE J. 2000, 46, 1271–1274, doi:10.1002/aic.690460619.
[20]  Saengwirun, P. ECON: A Software for Cost Calculation and Economic Analysis. M.S. Thesis, Chulalongkorn University, Bangkok, Thailand, 2011.
[21]  Peters, M.S.; Timmerhaus, K.; West, R. Plant Design and Economics for Chemical Engineers; McGraw-Hill: Singapore, 2004.
[22]  Kalakul, S. Development of Software for Life Cycle Assessment. M.S. Thesis, Chulalongkorn University, Bangkok, Thailand, April 2013.
[23]  PRO/II User’s Guide; Simulation Sciences, Inc: Brea, CA, USA, 2011.
[24]  Aspen HYSYS User’s Guide; Aspen Technology, Inc.: Burlington, MA, USA, 2009.
[25]  Marrero, J.; Gani, R. Group-contribution based estimation of pure component properties. Fluid Phase Equilbria 2001, 183, 183–208, doi:10.1016/S0378-3812(01)00431-9.
[26]  Zhang, Y.; Dubé, M.A.; McLean, D.D.; Kates, M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol. 2003, 89, 1–16, doi:10.1016/S0960-8524(03)00040-3.
[27]  Sotoft, L.F.; Rong, B.; Christensen, K.V.; Norddahl, B. Process simulation and economical evaluation of enzymatic biodiesel production plant. Bioresour. Technol. 2010, 101, 5266–5274, doi:10.1016/j.biortech.2010.01.130.
[28]  Darnoko, D.; Cheryan, M. Kinetic of palm oil transesterification in a batch reactor. J. Am. Oil Chem. Soc. 2000, 77, 1263–1267, doi:10.1007/s11746-000-0198-y.
[29]  Wang, Y.; Ou, S.; Liu, P.; Xue, F.; Tang, S. Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A 2006, 252, 107–112, doi:10.1016/j.molcata.2006.02.047.
[30]  Lou, W.; Zong, M.; Duan, Z. Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour. Technol. 2008, 99, 8752–8758, doi:10.1016/j.biortech.2008.04.038.
[31]  Nárvaez, P.; Rincón, S.; Sánchez, F. Kinetic of palm oil methanolysis. J. Am. Oil Chem. Soc. 2007, 87, 971–977, doi:10.1007/s11746-007-1120-y.
[32]  Jegannathan, K.; Seng, C.; Ravindra, P. Economic assessment of biodiesel production: Comparison of alkali and biocatalyst processes. Renew. Sustain. Energ. Rev. 2011, 15, 745–751, doi:10.1016/j.rser.2010.07.055.
[33]  Bokade, V.; Yadav, G. Transesterification of edible and nonedible vegetable oils with alcohols over heteropolyacids supported on acid-treated clay. Ind. Eng. Chem. Res. 2009, 48, 9408–9415, doi:10.1021/ie801543k.
[34]  Chew, Y.; Chua, L.; Cheng, K.; Sarmidi, M.; Aziz, R.; Lee, C. Kinetic study on the hydrolysis of palm olein using immobilized lipase. Biochem. Eng. J. 2008, 39, 516–520, doi:10.1016/j.bej.2007.10.019.
[35]  Edgar, L.; Yijun, L.; Dora, L.; Kaewta, S.; David, B.; Goodwin, J.G. Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 2005, 44, 5353–5363, doi:10.1021/ie049157g.
[36]  Ma, F.; Hanna, M.A. Biodiesel production. Bioresour. Technol. 1999, 70, 1–15, doi:10.1016/S0960-8524(99)00025-5.
[37]  Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plant and animals feedstocks for biodiesel production. Bioresour. Tecnol. 2010, 101, 7201–7210, doi:10.1016/j.biortech.2010.04.079.
[38]  Steimel, J.; Harrmann, M.; Schembecker, G.; Engell, S. A framework for modeling and optimization of process superstructures under uncertainty. Chem.Eng.Sci. 2013, doi:10.1016/j.ces.2013.04.052i.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413