全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Processes  2014 

Rapid Determination of Optimal Conditions in a Continuous Flow Reactor Using Process Analytical Technology

DOI: 10.3390/pr2010024

Keywords: continuous flow, Raman spectroscopy, process optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

Continuous flow reactors (CFRs) are an emerging technology that offer several advantages over traditional batch synthesis methods, including more efficient mixing schemes, rapid heat transfer, and increased user safety. Of particular interest to the specialty chemical and pharmaceutical manufacturing industries is the significantly improved reliability and product reproducibility over time. CFR reproducibility can be attributed to the reactors achieving and maintaining a steady state once all physical and chemical conditions have stabilized. This work describes the implementation of a smart CFR with univariate physical and multivariate chemical monitoring that allows for rapid determination of steady state, requiring less than one minute. Additionally, the use of process analytical technology further enabled a significant reduction in the time and cost associated with offline validation methods. The technology implemented for this study is chemistry and hardware agnostic, making this approach a viable means of optimizing the conditions of any CFR.

References

[1]  Wiles, C.; Ngamsom, B. Continuous Flow Esterifications. Application Note: chemtrix.com; 2010.
[2]  Roberge, D.M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Microreactor technology: A revolution for the fine chemical and pharmaceutical industries? Chem. Eng. Technol. 2005, 28, 318–323.
[3]  Roberge, D.M.; Bieler, N.; Mathier, M.; Eyholzer, M.; Zimmermann, B.; Barthe, P.; Guermeur, C.; Lobet, O.; Moreno, M.; Woehl, P. Development of an industrial multi-injection microreactor for fast and exothermic reactions—Part II. Chem. Eng. Technol. 2008, 31, 1155–1161.
[4]  Roberge, D.M.; Zimmermann, B.; Rainone, F.; Gottsponer, M.; Eyholzer, M.; Kockmann, N. Microreactor technology and continuous processes in the fine chemical and pharmaceutical industry: Is the revolution underway? Org. Process Res. Dev. 2008, 12, 905–910.
[5]  Watts, P.; Wiles, C. Recent advances in synthetic micro reaction technology. Chem. Commun. 2007, doi:10.1039/B609428G.
[6]  Roberto, M.F.; Dearing, T.I.; Martin, S.; Marquardt, B.J. Integration of continuous flow reactors and online raman spectroscopy for process optimization. J. Pharm. Innov. 2012, 7, 69–75.
[7]  Wiles, C.; Watts, P.; Haswell, S.J.; Pombo-Villar, E. The aldol reaction of silyl enol ethers within a micro reactor. Lab Chip 2001, 1, 100–101, doi:10.1039/b107861e.
[8]  Wiles, C.; Watts, P.; Haswell, S.J.; Pombo-Villar, E. 1,4-addition of enolates to α,β-unsaturated ketones within a micro reactor. Lab Chip 2002, 2, 62–64.
[9]  Leung, S.A.; Winkle, R.F.; Wootton, R.C.R.; deMello, A.J. A method for rapid reaction optimisation in continuous-flow microfluidic reactors using online raman spectroscopic detection. Analyst 2005, 130, 46–51, doi:10.1039/b412069h.
[10]  Pawliszyn, J. Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1.34.
[11]  Undey, K.; Low, D.; Menezes, J.; Koch, M. Pat Applied in Biopharmaceutical Process Development and Manufacturing: An Enabling Tool for Quality-by-Design; CRC Press: Boca Raton, FL, USA, 2012.
[12]  Kawaguchi, T.; Miyata, H.; Ataka, K.; Mae, K.; Yoshida, J. Room-temperature swern oxidations by using a microscale flow system. Angew. Chem. Int. Ed. 2005, 44, 2413–2416.
[13]  Van der Linden, J.J.M.; Hilberink, P.W.; Kronenburg, C.M.P.; Kemperman, G.J. Investigation of the moffatt-swern oxidation in a continuous flow microreactor system. Org. Process Res. Dev. 2008, 12, 911–920, doi:10.1021/op700228e.
[14]  Mozharov, S.; Nordon, A.; Littlejohn, D.; Wiles, C.; Watts, P.; Dallin, P.; Girkin, J.M. Improved method for kinetic studies in microreactors using flow manipulation and noninvasive raman spectrometry. J. Am. Chem. Soc. 2011, 133, 3601–3608.
[15]  Cao, E.; Sankar, M.; Firth, S.; Lam, K.F.; Bethell, D.; Knight, D.K.; Hutchings, G.J.; McMillan, P.F.; Gavriilidis, A. Reaction and raman spectroscopic studies of alcohol oxidation on gold-palladium catalysts in microstructured reactors. Chem. Eng. J. 2011, 167, 734–743, doi:10.1016/j.cej.2010.08.082.
[16]  Mechtilde, S.; Eduard, S.; Andreas, F. Computer controlled chemical micro-reactor. J. Phys. Conf. Ser. 2006, 1, 115, doi:10.1088/1742-6596/28/1/024.
[17]  Misra, M.; Yue, H.H.; Qin, S.J.; Ling, C. Multivariate process monitoring and fault diagnosis by multi-scale pca. Comput. Chem. Eng. 2002, 26, 1281–1293, doi:10.1016/S0098-1354(02)00093-5.
[18]  Chen, J.; Liu, K.-C. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chem. Eng. Sci. 2002, 57, 63–75, doi:10.1016/S0009-2509(01)00366-9.
[19]  Dearing, T.I.; Thompson, W.J.; Rechsteiner, C.E., Jr.; Marquardt, B.J. Characterization of crude oil products using data fusion of process raman, infrared, and nuclear magnetic resonance (NMR) spectra. Appl. Spectrosc. 2011, 65, 181–186, doi:10.1366/10-05974.
[20]  Szostak, R.; Mazurek, S. Quantitative determination of acetylsalicylic acid and acetaminophen in tablets by FT-Raman spectroscopy. Analyst 2002, 127, 144–148, doi:10.1039/b108240j.
[21]  Shah, R.B.; Tawakkul, M.A.; Khan, M.A. Process analytical technology: Chemometric analysis of raman and near infra-red spectroscopic data for predicting physical properties of extended release matrix tablets. J. Pharm. Sci. 2007, 96, 1356–1365, doi:10.1002/jps.20931.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413