全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Viruses  2014 

ABSL-4 Aerobiology Biosafety and Technology at the NIH/NIAID Integrated Research Facility at Fort Detrick

DOI: 10.3390/v6010137

Keywords: ABSL-4, aerobiology, biosafety level 4, class III biosafety cabinet, BSL-4, high-consequence viral pathogens, medical countermeasure, viral hemorrhagic fever

Full-Text   Cite this paper   Add to My Lib

Abstract:

The overall threat of a viral pathogen to human populations is largely determined by the modus operandi and velocity of the pathogen that is transmitted among humans. Microorganisms that can spread by aerosol are considered a more challenging enemy than those that require direct body-to-body contact for transmission, due to the potential for infection of numerous people rather than a single individual. Additionally, disease containment is much more difficult to achieve for aerosolized viral pathogens than for pathogens that spread solely via direct person-to-person contact. Thus, aerobiology has become an increasingly necessary component for studying viral pathogens that are naturally or intentionally transmitted by aerosol. The goal of studying aerosol viral pathogens is to improve public health preparedness and medical countermeasure development. Here, we provide a brief overview of the animal biosafety level 4 Aerobiology Core at the NIH/NIAID Integrated Research Facility at Fort Detrick, Maryland, USA.

References

[1]  Roy, C.J.; Reed, D.S.; Hutt, J.A. Aerobiology and inhalation exposure to biological select agents and toxins. Vet. Pathol. 2010, 47, 779–789, doi:10.1177/0300985810378650.
[2]  Alibek, K.; Handelman, S. Biohazard: The Chilling True Story of the Largest Covert Biological Weapons Program in the World, Told from the Inside by the Man who Ran It, 1st ed. ed.; Random House: New York, NY, USA, 1999.
[3]  Skvorc, C.; Wilson, D.E. Developing a behavioral health screening program for BSL-4 laboratory workers at the National Institutes of Health. Biosecur. Bioterror. 2011, 9, 23–29, doi:10.1089/bsp.2010.0048.
[4]  Shurtleff, A.C.; Garza, N.; Lackemeyer, M.; Carrion, R., Jr.; Griffiths, A.; Patterson, J.; Edwin, S.S.; Bavari, S. The impact of regulations, safety considerations and physical limitations on research progress at maximum biocontainment. Viruses 2012, 4, 3932–3951, doi:10.3390/v4123932.
[5]  Pastel, R.H.; Demmin, G.; Severson, G.; Torres-Cruz, R.; Trevino, J.; Kelly, J.; Arrison, J.; Christman, J. Clinical laboratories, the select agent program, and biological surety (biosurety). Clin. Lab. Med. 2006, 26, 299–312, doi:10.1016/j.cll.2006.03.004.
[6]  Wilson, D.E.; Chosewood, L.C. Biosafety in Microbiological and Biomedical Laboratories, 5th ed. ed.; U.S. Department of Health and Human Services: Washington, DC, USA, 2009.
[7]  Le Blanc Smith, P.; Edwards, S. Contain the operator or contain the bug? In Anthology of Biosafety V: BSL-4 Laboratories; Richmond, J., Ed.; American Biological Safety Association: Mundelein, IL, USA, 2002; pp. 209–236.
[8]  Bressler, D.S.; Hawley, R.J. Safety considerations in the biosafety level 4 maximum containment laboratory. In Biological Safety-Principles and Practices, 4th ed.; Fleming, D.O., Hunt, D.L., Eds.; ASM Press: Washington, DC, USA, 2006; pp. 487–508.
[9]  De Kok-Mercado, F.; Kutlak, F.M.; Jahrling, P.B. The NIAID Integrated Research Facility at Fort Detrick. Appl. Biosaf. 2011, 16, 58–66.
[10]  Germfree Laboratories. Practices and Performance Testing for Class III Biological Safety Cabinets; Germfree Laboratories: Ormond Beach, FL, USA, 2011.
[11]  Henkel, R.D.; Sandberg, R.L.; Hilliard, J.K. A Class III cabinet BSL-4 laboratory. In Anthology of Biosafety V: BSL-4 Laboratories; Richmond, J., Ed.; American Biological Safety Association: Mundelein, IL, USA, 2002; pp. 237–251.
[12]  Germfree Laboratories. Basic Principles of Decontamination for Class III Biological Safety Cabinets; Germfree Laboratories: Ormond Beach, FL, USA, 2008.
[13]  Duhl, V. NIH Glovebox with Rapid Transfer Port. Operator’s Manual; Germfree Laboratories: Ormond Beach, FL, USA, 2010.
[14]  Hartings, J.M.; Roy, C.J. The automated bioaerosol exposure system: Preclinical platform development and a respiratory dosimetry application with nonhuman primates. J. Pharmacol. Toxicol. Methods 2004, 49, 39–55, doi:10.1016/j.vascn.2003.07.001.
[15]  Gustin, K.M.; Belser, J.A.; Wadford, D.A.; Pearce, M.B.; Katz, J.M.; Tumpey, T.M.; Maines, T.R. Influenza virus aerosol exposure and analytical system for ferrets. Proc. Natl. Acad. Sci. USA 2011, 108, 8432–8437.
[16]  Reed, D.S.; Lackemeyer, M.G.; Garza, N.L.; Sullivan, L.J.; Nichols, D.K. Aerosol exposure to Zaire ebolavirus in three nonhuman primate species: Differences in disease course and clinical pathology. Microbes. Infect. 2011, 13, 930–936, doi:10.1016/j.micinf.2011.05.002.
[17]  Alves, D.A.; Glynn, A.R.; Steele, K.E.; Lackemeyer, M.G.; Garza, N.L.; Buck, J.G.; Mech, C.; Reed, D.S. Aerosol exposure to the angola strain of marburg virus causes lethal viral hemorrhagic fever in cynomolgus macaques. Vet. Pathol. 2010, 47, 831–851, doi:10.1177/0300985810378597.
[18]  Geisbert, T.W.; Daddario-Dicaprio, K.M.; Geisbert, J.B.; Reed, D.S.; Feldmann, F.; Grolla, A.; Stroher, U.; Fritz, E.A.; Hensley, L.E.; Jones, S.M.; Feldmann, H. Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses. Vaccine 2008, 26, 6894–6900, doi:10.1016/j.vaccine.2008.09.082.
[19]  Hermann, J.; Hoff, S.; Munoz-Zanzi, C.; Yoon, K.J.; Roof, M.; Burkhardt, A.; Zimmerman, J. Effect of temperature and relative humidity on the stability of infectious porcine reproductive and respiratory syndrome virus in aerosols. Vet. Res. 2007, 38, 81–93, doi:10.1051/vetres:2006044.
[20]  Hinds, W.C. Respiratory Deposition. In Aerosol Technology: Properties, Behavior, and Measurement of Aerosol Particles; Wiley and Sons: New York, NY, USA, 1999; pp. 233–259.
[21]  Roy, C.J.; Voss, T.G. Use of the aerosol rabbitpox virus model for evaluation of anti-poxvirus agents. Viruses 2010, 2, 2096–2107, doi:10.3390/v2092096.
[22]  Saini, D.; Hopkins, G.W.; Chen, C.J.; Seay, S.A.; Click, E.M.; Lee, S.; Hartings, J.M.; Frothingham, R. Sampling port for real-time analysis of bioaerosol in whole body exposure system for animal aerosol model development. J. Pharmacol. Toxicol. Methods 2011, 63, 143–149, doi:10.1016/j.vascn.2010.09.002.
[23]  Roy, C.J.; Pitt, L.M. Infectious disease aerobiology: Aerosol challenge methods. In Biodefense: Research Methodology and Animal Models; Swearingen, J.R., Ed.; Taylor & Francis: Boca Raton, FL, USA, 2006; pp. 61–76.
[24]  Guyton, A.C. Measurement of the respiratory volumes of laboratory animals. Am. J. Physiol. 1947, 150, 70–77.
[25]  Halloran, S.K.; Wexler, A.S.; Ristenpart, W.D. A comprehensive breath plume model for disease transmission via expiratory aerosols. PLoS One 2012, 7, e37088.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413