全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Viruses  2014 

Understanding the Process of Envelope Glycoprotein Incorporation into Virions in Simian and Feline Immunodeficiency Viruses

DOI: 10.3390/v6010264

Keywords: Simian immunodeficiency virus, feline immunodeficiency virus, Gag polyprotein, matrix protein, envelope glycoprotein, envelope incorporation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The lentiviral envelope glycoproteins (Env) mediate virus entry by interacting with specific receptors present at the cell surface, thereby determining viral tropism and pathogenesis. Therefore, Env incorporation into the virions formed by assembly of the viral Gag polyprotein at the plasma membrane of the infected cells is a key step in the replication cycle of lentiviruses. Besides being useful models of human immunodeficiency virus (HIV) infections in humans and valuable tools for developing AIDS therapies and vaccines, simian and feline immunodeficiency viruses (SIV and FIV, respectively) are relevant animal retroviruses; the study of which provides important information on how lentiviral replication strategies have evolved. In this review, we discuss the molecular mechanisms underlying the incorporation of the SIV and FIV Env glycoproteins into viral particles.

References

[1]  Clements, J.E.; Wong-Staal, F. Molecular biology of lentiviruses. Semin. Virol. 1992, 3, 137–146.
[2]  Clements, J.E.; Zink, M.C. Molecular biology and pathogenesis of animal lentivirus infections. Clin. Microbiol. Rev. 1996, 9, 100–117.
[3]  Seelamgari, A.; Maddukuri, A.; Berro, R.; de la Fuente, C.; Kehn, K.; Deng, L.; Dadgar, S.; Bottazzi, M.E.; Ghedin, E.; Pumfery, A.; et al. Role of viral regulatory and accessory proteins in HIV-1 replication. Front. Biosci. 2004, 9, 2388–2413.
[4]  Gilbert, J.R.; Wong-Staal, F. HIV-2 and SIV vector systems. Somat. Cell Mol. Genet. 2001, 26, 83–98, doi:10.1023/A:1021026730034.
[5]  De Parseval, A.; Elder, J.H. Demonstration that ORF2 encodes the feline immunodeficiency virus transactivating (Tat) protein and characterization of a unique gene product with partial rev activity. J. Virol. 1999, 73, 608–617.
[6]  Gemeniano, M.C.; Sawai, E.T.; Leutenegger, C.M.; Sparger, E.E. Feline immunodeficiency virus ORF-A is required for virus particle formation and virus infectivity. J. Virol. 2003, 77, 8819–8830.
[7]  Gemeniano, M.C.; Sawai, E.T.; Sparger, E.E. Feline immunodeficiency virus ORF-A localizes to the nucleus and induces cell cycle arrest. Virology 2004, 325, 167–174, doi:10.1016/j.virol.2004.05.007.
[8]  Sundquist, W.I.; Kr?usslich, H.-G. HIV-1 Assembly, budding, and maturation. Cold Spring Harb. Perspect. Med. 2012, 2, a006924.
[9]  Ganser-Pornillos, B.K.; Yeager, M.; Sundquist, W.I. The structural biology of HIV assembly. Curr. Opin. Struct. Biol. 2008, 18, 203–217, doi:10.1016/j.sbi.2008.02.001.
[10]  Gheysen, D.; Jacobs, E.; de Foresta, F.; Thiriart, C.; Francotte, M.; Thines, D.; de Wilde, M. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 1989, 59, 103–112, doi:10.1016/0092-8674(89)90873-8.
[11]  González, S.A.; Affranchino, J.L.; Gelderblom, H.R.; Burny, A. Assembly of the matrix protein of simian immunodeficiency virus into virus-like particles. Virology 1993, 194, 548–556, doi:10.1006/viro.1993.1293.
[12]  Manrique, M.L.; Celma, C.C.; González, S.A.; Affranchino, J.L. Mutational analysis of the feline immunodeficiency virus matrix protein. Virus Res. 2001, 76, 103–113, doi:10.1016/S0168-1702(01)00249-0.
[13]  Campbell, S.; Rein, A. In vitro assembly properties of human immunodeficiency virus type 1 Gag protein lacking the p6 domain. J. Virol. 1999, 73, 2270–2279.
[14]  Huseby, D.; Barklis, R.L.; Alfadhli, A.; Barklis, E. Assembly of human immunodeficiency virus precursor Gag proteins. J. Biol. Chem. 2005, 280, 17664–17670, doi:10.1074/jbc.M412325200.
[15]  Rauddi, M.L.; Mac Donald, C.L.; Affranchino, J.L.; González, S.A. Mapping of the self-interaction domains in the simian immunodeficiency virus Gag polyprotein. AIDS Res. Hum. Retroviruses 2011, 27, 303–316, doi:10.1089/aid.2010.0137.
[16]  Affranchino, J.L.; González, S.A. In vitro assembly of feline immunodeficiency virus Gag polyprotein. Virus Res. 2010, 150, 153–157, doi:10.1016/j.virusres.2010.03.012.
[17]  Checkley, M.A.; Luttge, B.G.; Freed, E.O. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J. Mol. Biol. 2011, 410, 582–608, doi:10.1016/j.jmb.2011.04.042.
[18]  Johnson, M.C. Mechanisms for Env glycoprotein acquisition by retroviruses. AIDS Res. Hum. Retroviruses 2011, 27, 239–247, doi:10.1089/aid.2010.0350.
[19]  Postler, T.S.; Desrosiers, R.C. The tale of the long tail: The cytoplasmic domain of HIV-1 gp41. J. Virol. 2013, 87, 2–15, doi:10.1128/JVI.02053-12.
[20]  Daniel, M.D.; Letvin, N.L.; King, N.W.; Kannagi, M.; Sehgal, P.K.; Hunt, R.D.; Kanki, P.J.; Essex, M.; Desrosiers, R.C. Isolation of a T-cell tropic HTLVIII-like retrovirus from macaques. Science 1985, 228, 1201–1204.
[21]  Desrosiers, R.C. Nonhuman Lentiviruses. In Fields Virology, 5th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; Volume 2. Chapter 59, pp. 2215–2243.
[22]  Letvin, N.L.; King, N.W. Immunologic and pathologic manifestations of the infection of rhesus monkeys with simian immunodeficiency virus of Macaques. J. Acquir. Immune Defic. Syndr. 1990, 3, 1023–1040.
[23]  Hirsch, V.M.; Olmsted, R.A.; Murphey-Corb, M.; Purcell, R.H.; Johnson, P.R. An African primate lentivirus (SIVsm) closely related to HIV-2. Nature 1989, 339, 389–392, doi:10.1038/339389a0.
[24]  Lemey, P.; Pybus, O.G.; Wang, B.; Saksena, N.K.; Salemi, M.; Vandamme, A.M. Tracing the origin and history of the HIV-2 epidemic. Proc. Natl. Acad. Sci. USA 2003, 100, 6588–6592, doi:10.1073/pnas.0936469100.
[25]  Gao, F.; Bailes, E.; Robertson, D.L.; Chen, Y.; Rodenburg, C.M.; Michael, S.F.; Cummins, L.B.; Arthur, L.O.; Peeters, M.; Shaw, G.M.; et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 1999, 397, 436–441, doi:10.1038/17130.
[26]  Keele, B.F.; van Heuverswyn, F.; Li, Y.; Bailes, E.; Takehisa, J.; Santiago, M.L.; Bibollet-Ruche, F.; Chen, Y.; Wain, L.V.; Liegeois, F.; et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 2006, 313, 523–526, doi:10.1126/science.1126531.
[27]  Veronese, F.D.; Joseph, B.; Copeland, T.D.; Oroszlan, S.; Gallo, R.C.; Sarngadharan, M.G. Identification of Simian immunodeficiency virus SIVMAC env gene products. J. Virol. 1989, 63, 1416–1419.
[28]  Zhu, P.; Chertova, E.; Bess, J., Jr.; Lifson, J.D.; Arthur, L.O.; Liu, J.; Taylor, K.A.; Roux, K.H. Electron tomography analysis of envelope glycoprotein trimers on HIV and Simian immunodeficiency virus virions. Proc. Natl. Acad. Sci. USA 2003, 100, 15812–15817.
[29]  Sattentau, Q.J.; Clapham, P.R.; Weiss, R.A.; Beverley, P.C.; Montagnier, L.; Alhalabi, M.F.; Gluckmann, J.C.; Klatzmann, D. The human and simian immunodeficiency viruses HIV-1, HIV-2 and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS 1988, 2, 101–105, doi:10.1097/00002030-198804000-00005.
[30]  Chen, Z.; Zhou, P.; Ho, D.D.; Landau, N.R.; Marx, P.A. Genetically divergent strains of simian immunodeficiency virus use CCR5 as a coreceptor for entry. J. Virol. 1997, 71, 2705–2714.
[31]  Edinger, A.L.; Amedee, A.; Miller, K.; Doranz, B.J.; Endres, M.; Sharron, M.; Samson, M.; Lu, Z.H.; Clements, J.E.; Murphey-Corb, M.; et al. Differential utilization of CCR5 by macrophage and T cell tropic simian immunodeficiency virus strains. Proc. Natl. Acad. Sci. USA 1997, 94, 4005–4010.
[32]  Sina, S.T.; Ren, W.; Cheng-Mayer, C. Coreceptor use in nonhuman primate models of HIV infection. J. Transl. Med. 2010, 9, doi:10.1186/1479-5876-9-S1-S7.
[33]  Liu, H.Y.; Soda, Y.; Shimizu, N.; Haraguchi, Y.; Jinno, A.; Takeuchi, Y.; Hoshino, H. CD4-dependent and CD4-independent utilization of coreceptors by human immunodeficiency viruses type 2 and simian immunodeficiency viruses. Virology 2000, 278, 276–288, doi:10.1006/viro.2000.0623.
[34]  Lorin, A.; Lins, L.; Stroobant, V.; Brasseur, R.; Charloteaux, B. The minimal fusion peptide of simian immunodeficiency virus corresponds to the 11 first residues of gp32. J. Pept. Sci. 2008, 14, 423–428, doi:10.1002/psc.949.
[35]  Malashkevich, V.N.; Chan, D.C.; Chutkowski, C.T.; Kim, P.S. Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: Conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc. Natl. Acad. Sci. USA 1998, 95, 9134–9139, doi:10.1073/pnas.95.16.9134.
[36]  Dewhurst, S.; Embretson, J.E.; Anderson, D.C.; Mullins, J.I.; Fultz, P.N. Sequence analysis and acute pathogenicity of molecularly cloned SIVSMM-PBj14. Nature 1990, 345, 636–639, doi:10.1038/345636a0.
[37]  Miller, M.A.; Garry, R.F.; Jaynes, J.M.; Montelaro, R.C. A Structural correlation between lentivirus transmembrane proteins and natural cytolytic peptides. AIDS Res. Hum. Retroviruses 1991, 7, 511–519, doi:10.1089/aid.1991.7.511.
[38]  Celma, C.C.P.; Manrique, J.M.; Affranchino, J.L.; Hunter, E.; González, S.A. Domains in the simian immunodeficiency virus gp41 cytoplasmic tail required for envelope incorporation into particles. Virology 2001, 283, 253–261, doi:10.1006/viro.2001.0869.
[39]  Srinivas, S.K.; Srinivas, R.V.; Anantharamaiah, G.M.; Segrest, J.P.; Compans, R.W. Membrane Interactions of synthetic peptides corresponding to amphipathic helical segments of the human immunodeficiency virus type-1 envelope glycoprotein. J. Biol. Chem. 1992, 267, 7121–7127.
[40]  Miller, M.A.; Cloyd, M.D.; Liebmann, J.; Rinaldo, C.R., Jr.; Islam, K.R.; Wang, S.Z.; Mietzner, T.A.; Montelaro, R.C. Alterations in cell membrane permeability by the lentivirus lytic peptide (LLP-1) of HIV-1 transmembrane protein. Virology 1993, 196, 89–100, doi:10.1006/viro.1993.1457.
[41]  Viard, M.; Ablan, S.D.; Zhou, M.; Veenstra, T.D.; Freed, E.O.; Raviv, Y.; Blumenthal, R. Photoinduced reactivity of the HIV-1 envelope glycoprotein with a membrane-embedded probe reveals insertion of portions of the HIV-1 gp41 cytoplasmic tail into the viral membrane. Biochemistry 2008, 47, 1977–1983, doi:10.1021/bi701920f.
[42]  Srinivas, S.K.; Srinivas, R.V.; Anantharamaiah, G.M.; Compans, R.W.; Segrest, J.P. Cytosolic domain of the human immunodeficiency virus envelope glycoproteins binds to calmodulin and inhibits calmodulin-regulated proteins. J. Biol. Chem. 1993, 268, 22895–22899.
[43]  Yuan, T.; Mietzner, T.A.; Montelaro, R.C.; Vogel, H.J. Characterization of the calmodulin binding domain of SIV transmembrane glycoprotein by NMR and CD spectroscopy. Biochemistry 1995, 34, 10690–10696, doi:10.1021/bi00033a045.
[44]  Ishikawa, H.; Sasaki, M.; Noda, S.; Koga, Y. Apoptosis induction by the binding of the carboxyl terminus of human immunodeficiency virus type 1 gp160 to calmodulin. J. Virol. 1998, 72, 6574–6580.
[45]  Micoli, K.J.; Pan, G.; Wu, Y.; Williams, J.P.; Cook, W.J.; McDonald, J.M. Requirement of calmodulin binding by HIV-1 gp160 for enhanced FAS mediated apoptosis. J. Biol. Chem. 2000, 275, 1233–1240.
[46]  Beary, T.P.; Tencza, S.B.; Mietzner, T.A.; Montelaro, R.C. Interruption of T-Cell signal transduction by lentivirus lytic peptides from HIV-1 transmembrane protein. J. Pept. Res. 1998, 51, 75–79.
[47]  Sauter, M.M.; Pelchen-Matthews, A.; Bron, R.; Marsh, M.; LaBranche, C.C.; Vance, P.J.; Romano, J.; Haggarty, B.S.; Hart, T.K.; Lee, W.M.; et al. An internalization signal in the simian immunodeficiency virus transmembrane protein cytoplasmic domain modulates expression of envelope glycoproteins on the cell surface. J. Cell Biol. 1996, 132, 795–811, doi:10.1083/jcb.132.5.795.
[48]  Bowers, K.; Pelchen-Matthews, A.; Hoening, S.; Vance, P.J.; Creary, L.; Haggarty, B.S.; Romano, J.; Ballensiefen, W.; Hoxie, J.A.; Marsh, M. The simian immunodeficiency virus envelope glycoprotein contains multiple signals that regulate its cell surface expression and endocytosis. Traffic 2000, 1, 661–674, doi:10.1034/j.1600-0854.2000.010810.x.
[49]  Boge, M.; Wyss, S.; Bonifacino, J.S.; Thali, M. A membrane-proximal tyrosine-based signal mediates internalization of the HIV-1 envelope glycoprotein via interaction with the AP-2 clathrin adaptor. J. Biol. Chem. 1998, 273, 15773–15778, doi:10.1074/jbc.273.25.15773.
[50]  Byland, R.; Vance, P.J.; Hoxie, J.A.; Marsh, M. A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein. Mol. Biol. Cell 2007, 18, 414–425.
[51]  Kodama, T.; Wooley, D.P.; Naidu, Y.M.; Kestler, H.W.; Daniel, M.D.; Li, Y.; Desrosiers, R.C. Significance of premature stop codons in env of simian immunodeficiency virus. J. Virol. 1989, 63, 4709–4714.
[52]  Chakrabarti, L.; Emerman, M.; Tiollais, P.; Sonigo, P. The Cytoplasmic domain of simian immunodeficiency virus transmembrane protein modulates infectivity. J. Virol. 1989, 63, 4395–4403.
[53]  Zingler, K.; Littman, D.R. Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein increases Env incorporation into particles and fusogenicity and infectivity. J. Virol. 1993, 67, 2824–2831.
[54]  Johnston, P.B.; Dubay, J.W.; Hunter, E. Truncations of the simian immunodeficiency virus transmembrane protein confer expanded host range by removing a block to virus entry into cells. J. Virol. 1993, 67, 3077–3086.
[55]  Affranchino, J.L.; González, S.A. Mutations at the C-terminus of the simian immunodeficiency virus envelope glycoprotein affect gp120-gp41 stability on virions. Virology 2006, 347, 217–225, doi:10.1016/j.virol.2005.11.032.
[56]  Henderson, L.E.; Benveniste, R.E.; Sowder, R.; Copeland, T.D.; Schultz, A.M.; Oroszlan, S. Molecular characterization of Gag proteins from simian immunodeficiency virus (SIVMne). J. Virol. 1988, 62, 2587–2595.
[57]  Delchambre, M.; Gheysen, D.; Thinès, D.; Thiriart, C.; Jacobs, C.; Verdin, E.; Horth, M.; Burny, A.; Bex, F. The Gag Precursor of the simian immunodeficiency virus assembles into virus-like particles. EMBO J. 1989, 8, 2653–2660.
[58]  González, S.A.; Affranchino, J.L. Substitution of leucine 8 in the simian immunodeficiency virus matrix protein impairs particle formation without affecting N-myristylation of the Gag precursor. Virology 1998, 240, 27–35, doi:10.1006/viro.1997.8919.
[59]  Manrique, M.L.; González, S.A.; Affranchino, J.L. Functional relationship between the matrix proteins of feline and simian immunodeficiency viruses. Virology 2004, 329, 157–167, doi:10.1016/j.virol.2004.07.029.
[60]  Yuan, X.; Yu, X.; Lee, T.-H.; Essex, M. Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor. J. Virol. 1993, 67, 6387–6394.
[61]  Zhou, W.; Parent, L.J.; Wills, J.W.; Resh, M.D. Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J. Virol. 1994, 68, 2556–2569.
[62]  Ono, A.; Freed, E.O. Binding of human immunodeficiency virus type 1 Gag to membrane: Role of the matrix amino terminus. J. Virol. 1999, 73, 4136–4144.
[63]  Paillart, J.-C.; G?ttlinger, H.G. Opposing effects of human immunodeficiency virus type 1 matrix mutations support a myristyl switch model of Gag membrane targeting. J. Virol. 1999, 73, 2604–2612.
[64]  Saad, J.S.; Miller, J.; Tai, J.; Kim, A.; Ghanam, R.H.; Summers, M.F. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc. Natl. Acad. Sci. USA 2006, 103, 11364–11369, doi:10.1073/pnas.0602818103.
[65]  Alfadhli, A.; Still, A.; Barklis, E. Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids. J. Virol. 2009, 83, 12196–12203, doi:10.1128/JVI.01197-09.
[66]  Chukkapalli, V.; Oh, S.J.; Ono, A. Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain. Proc. Natl. Acad. Sci. USA 2010, 107, 1600–1605, doi:10.1073/pnas.0908661107.
[67]  Rao, Z.; Belyaev, A.S.; Fry, E.; Roy, P.; Jones, I.M.; Stuart, D.I. Crystal structure of SIV matrix antigen and implications for virus assembly. Nature 1995, 378, 743–747, doi:10.1038/378743a0.
[68]  Hill, C.P.; Worthylake, D.; Bancroft, D.P.; Christensen, A.M.; Sundquist, W.I. Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: Implications for membrane association and assembly. Proc. Natl. Acad. Sci. USA 1996, 93, 3099–3104, doi:10.1073/pnas.93.7.3099.
[69]  González, S.A.; Affranchino, J.L. Mutational analysis of the conserved cysteine residues in the simian immunodeficiency virus matrix protein. Virology 1995, 210, 501–507, doi:10.1006/viro.1995.1369.
[70]  González, S.A.; Burny, A.; Affranchino, J.L. Identification of domains in the simian immunodeficiency virus matrix protein essential for assembly and envelope glycoprotein incorporation. J. Virol. 1996, 70, 6384–6389.
[71]  Manrique, J.M.; Celma, C.C.P.; Hunter, E.; Affranchino, .J.L.; González, S.A. Positive and negative modulation of virus infectivity and envelope glycoprotein incorporation into virions by amino acid substitutions at the N-terminus of the simian immunodeficiency virus matrix protein. J. Virol. 2003, 77, 10881–10888.
[72]  Tang, C.; Ndassa, Y.; Summers, M.F. Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Nat. Struct. Biol. 2002, 9, 537–543.
[73]  Morikawa, Y.; Hockley, D.J.; Nermut, M.V.; Jones, I.M. Roles of matrix, p2, and N-terminal myristoylation in human immunodeficiency virus type 1 Gag assembly. J. Virol. 2000, 74, 16–23, doi:10.1128/JVI.74.1.16-23.2000.
[74]  Morikawa, Y.; Zhang, W.H.; Hockley, D.J.; Nermut, M.V.; Jones, I.M. Detection of a trimeric human immunodeficiency virus type 1 Gag intermediate is dependent on sequences in the matrix protein, p17. J. Virol. 1998, 72, 7659–7663.
[75]  Alfadhli, A.; Barklis, R.L.; Barklis, E. HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 2009, 387, 466–472, doi:10.1016/j.virol.2009.02.048.
[76]  Briggs, J.A.; Riches, J.D.; Glass, B.; Bartonova, V.; Zanetti, G.; Kr?usslich, H.G. Structure and assembly of immature HIV. Proc. Natl. Acad. Sci. USA 2009, 106, 11090–11095.
[77]  Tedbury, P.R.; Ablan, S.D.; Freed, E.O. Global rescue of defects in HIV-1 envelope glycoprotein incorporation: Implications for matrix structure. PLoS Pathog. 2013, 9, e1003739, doi:10.1371/journal.ppat.1003739.
[78]  Manrique, J.M.; Celma, C.C.P.; Affranchino, J.L.; Hunter, E.; González, S.A. Small variations in the length of the cytoplasmic domain of the simian immunodeficiency virus transmembrane protein drastically affect envelope incorporation and virus entry. AIDS Res. Hum. Retroviruses 2001, 17, 1615–1624, doi:10.1089/088922201753342022.
[79]  Mammano, F.; Kondo, E.; Sodroski, J.; Bukovsky, A.; G?ttlinger, H.G. Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. J. Virol. 1995, 69, 3824–3830.
[80]  Freed, E.O.; Martin, M.A. Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J. Virol. 1995, 69, 1984–1989.
[81]  Celma, C.C.P.; Manrique, J.M.; Hunter, E.; Affranchino, J.L.; González, S.A. Second-Site revertants of a simian immunodeficiency virus gp41 mutant defective in envelope glycoprotein incorporation. AIDS Res. Hum. Retroviruses 2004, 20, 731–739.
[82]  Yu, X.; Yuan, X.; Matsuda, Z.; Lee, T.-H.; Essex, M. The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. J. Virol. 1992, 66, 4966–4971.
[83]  Dorfman, T.; Mammano, F.; Haseltine, W.A.; G?ttlinger, H.G. Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J. Virol. 1994, 68, 1689–1696.
[84]  Freed, E.O.; Martin, M.A. Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J. Virol. 1996, 70, 341–351.
[85]  Murakami, T.; Freed, E.O. Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and α-helix 2 of the gp41 cytoplasmic tail. J. Virol. 2000, 74, 3548–3554, doi:10.1128/JVI.74.8.3548-3554.2000.
[86]  Wyma, D.J.; Kotov, A.; Aiken, C. Evidence for a stable interaction of gp41 with Pr55(Gag) in immature human immunodeficiency virus type 1 particles. J. Virol. 2000, 74, 9381–9387, doi:10.1128/JVI.74.20.9381-9387.2000.
[87]  Kalia, V.; Sarkar, S.; Gupta, P.; Montelaro, R.C. Rational site-directed mutations of the LLP-1 and LLP-2 lentivirus lytic peptide domains in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 indicate common functions in cell-cell fusion but distinct roles in virion envelope incorporation. J. Virol. 2003, 77, 3634–3646, doi:10.1128/JVI.77.6.3634-3646.2003.
[88]  Manrique, J.M.; Affranchino, J.L.; González, S.A. In vitro binding of the simian immunodeficiency virus matrix protein to the cytoplasmic domain of the envelope glycoprotein. Virology 2008, 373, 273–279.
[89]  Li, J.; Lord, C.I.; Haseltine, W.; Letvin, N.L.; Sodroski, J. Infection of cynomologus monkeys with a chimeric HIV-1/SIVmac virus that expresses the HIV-1 envelope glycoproteins. J. Acquir. Immune. Defic. Syndr. 1992, 5, 639–646.
[90]  Lopez-Vergès, S.; Camus, G.; Blot, G.; Beauvoir, R.; Benarous, R.; Berlioz-Torrent, C. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc. Natl. Acad. Sci. USA 2006, 103, 14947–14952.
[91]  Checkley, M.A.; Luttge, B.G.; Mercredi, P.Y.; Kyere, S.K.; Donlan, J.; Murakami, T.; Summers, M.F.; Cocklin, S.; Freed, E.O. Reevaluation of the requirement for TIP47 in human immunodeficiency virus type 1 envelope glycoprotein incorporation. J. Virol. 2013, 87, 3561–3570, doi:10.1128/JVI.03299-12.
[92]  Pedersen, N.C.; Ho, E.W.; Brown, M.L.; Yamamoto, J.K. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 1987, 235, 790–793.
[93]  Brunner, D.; Pedersen, N.C. Infection of peritoneal macrophages in vitro and in vivo with feline immunodeficiency virus. J. Virol. 1989, 63, 5483–5488.
[94]  Brown, W.C.; Bissey, L.; Logan, K.S.; Pedersen, N.C.; Elder, J.H.; Collisson, E.W. Feline immunodeficiency virus infects both CD4+ and CD8+ T lymphocytes. J. Virol. 1991, 65, 3359–3364.
[95]  English, R.V.; Johnson, C.M.; Gebhard, D.H.; Tompkins, M.B. In vivo lymphocyte tropism of feline immunodeficiency virus. J. Virol. 1993, 67, 5175–5186.
[96]  De Parseval, A.; Chatterji, U.; Sun, P.; Elder, J.H. Feline immunodeficiency virus targets activated CD4+ T cells by using CD134 as a binding receptor. Proc. Natl. Acad. Sci. USA 2004, 101, 13044–13049.
[97]  Shimojima, M.; Miyasawa, T.; Ikeda, Y.; McMonagle, E.L.; Haining, H.; Akashi, H.; Takeuchi, Y.; Hosie, M.J.; Willett, B.J. Use of CD134 as a primary receptor by the feline immunodeficiency virus. Science 2004, 303, 1192–1195, doi:10.1126/science.1092124.
[98]  Poeschla, E.M.; Looney, D.J. CXCR4 is required by a nonprimate lentivirus: Heterologous expression of feline immunodeficiency virus in human, rodent, and feline cells. J. Virol. 1998, 72, 6858–6866.
[99]  Verschoor, E.J.; Hulskotte, E.G.J.; Ederveen, J.; Koolen, M.J.M.; Horzinek, M.C.; Rottier, P.J.M. Post-translational processing of the feline immunodeficiency virus envelope precursor protein. Virology 1993, 193, 433–438, doi:10.1006/viro.1993.1140.
[100]  De Parseval, A.; Elder, J.H. Binding of recombinant feline immunodeficiency virus surface glycoprotein to feline cells: Role of CXCR4, cell-surface heparans, and an unidentified non-CXCR4 receptor. J. Virol. 2001, 75, 4528–4539, doi:10.1128/JVI.75.10.4528-4539.2001.
[101]  Garg, H.; Fuller, F.J.; Tompkins, W.A.F. Mechanism of feline immunodeficiency virus envelope glycoprotein-mediated fusion. Virology 2004, 321, 274–286, doi:10.1016/j.virol.2004.01.006.
[102]  Giannecchini, S.; Bonci, F.; Pistello, M.; Matteucci, D.; Sichi, O.; Rovero, P.; Bendinelli, M. The membrane-proximal tryptophan-rich region in the transmembrane glycoprotein ectodomain of feline immunodeficiency virus is important for cell entry. Virology 2004, 320, 156–166, doi:10.1016/j.virol.2003.12.001.
[103]  Sundstrom, M.; White, R.L.; de Parseval, A.; Sastry, K.J.; Morris, G.; Grant, C.K.; Elder, J.H. Mapping of the CXCR4 Binding site within variable region 3 of the feline immunodeficiency virus surface glycoprotein. J. Virol. 2008, 82, 9134–9142, doi:10.1128/JVI.00394-08.
[104]  Hu, Q.Y.; Fink, E.; Hong, Y.; Wang, C.; Grant, C.K.; Elder, J.H. Fine definition of the CXCR4-binding region on the V3 loop of feline immunodeficiency virus surface glycoprotein. PLoS One 2010, 5, e10689.
[105]  González, S.A.; Falcón, J.I.; Affranchino, J.L. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4. AIDS Res. Hum. Retroviruses 2013, doi:10.1089/aid.2013.0213.
[106]  Celma, C.C.P.; Paladino, M.G.; González, S.A.; Affranchino, J.L. Importance of the short cytoplasmic domain of feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions. Virology 2007, 366, 405–414, doi:10.1016/j.virol.2007.05.019.
[107]  Wyss, S.; Dimitrov, A.S.; Baribaud, F.; Edwards, T.G.; Blumenthal, R.; Hoxie, J.A. regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membrane-interactive domain in the gp41 cytoplasmic tail. J. Virol. 2005, 79, 12231–12241, doi:10.1128/JVI.79.19.12231-12241.2005.
[108]  Edwards, T.G.; Wyss, S.; Reeves, J.D.; Zolla-Pazner, S.; Hoxie, J.A.; Doms, R.W.; Baribaud, F. Truncation of the cytoplasmic domain induces exposure of conserved regions in the ectodomain of human immunodeficiency virus type 1 envelope glycoprotein. J. Virol. 2002, 76, 2683–2691, doi:10.1128/JVI.76.6.2683-2691.2002.
[109]  Kalia, V.; Sarkar, S.; Gupta, P.; Montelaro, R.C. Antibody neutralization escape mediated by point mutations in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41. J. Virol. 2005, 79, 2097–2107.
[110]  Poignard, P.; Moulard, M.; Golez, E.; Vivona, V.; Franti, M.; Venturini, S.; Wang, M.; Parren, P.W.H.I.; Burton, D.R. Heterogeneity of envelope molecules expressed on primary human immunodeficiency virus type 1 particles as probed by the binding of neutralizing and nonneutralizing antibodies. J. Virol. 2003, 77, 353–365, doi:10.1128/JVI.77.1.353-365.2003.
[111]  Moore, P.N.; Crooks, E.T.; Porter, L.; Zhu, P.; Cayanan, C.S.; Grise, H.; Corcoran, P.; Zwick, M.B.; Franti, M.; Morris, L.; et al. Nature of nonfunctional envelope proteins on the surface of human immunodeficiency virus type 1. J. Virol. 2006, 80, 2515–2528, doi:10.1128/JVI.80.5.2515-2528.2006.
[112]  González, S.A.; Paladino, M.G.; Affranchino, J.L. Palmitoylation of the feline immunodeficiency virus envelope glycoprotein and its effect on fusion activity and envelope incorporation into virions. Virology 2012, 428, 1–10, doi:10.1016/j.virol.2012.03.005.
[113]  Salaun, C.; Greaves, J.; Chamberlain, L.H. The intracellular dynamic of protein palmitoylation. J. Cell Biol. 2010, 191, 1229–1238, doi:10.1083/jcb.201008160.
[114]  Lindwasser, O.W.; Resh, M.D. Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J. Virol. 2001, 75, 7913–7924, doi:10.1128/JVI.75.17.7913-7924.2001.
[115]  Nguyen, D.H.; Hildreth, J.E. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol. 2000, 74, 3264–3272, doi:10.1128/JVI.74.7.3264-3272.2000.
[116]  Ono, A.; Freed, E.O. Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc. Natl. Acad. Sci. USA 2001, 98, 13925–13930.
[117]  Brown, D.A.; Rose, J.K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992, 68, 533–544, doi:10.1016/0092-8674(92)90189-J.
[118]  Yang, C.; Spies, C.P.; Compans, R.W. The human and simian immunodeficiency virus envelope glycoprotein transmembrane subunits are palmitoylated. Proc. Natl. Acad. Sci. USA 1995, 92, 9871–9875, doi:10.1073/pnas.92.21.9871.
[119]  Rousso, I.; Mixon, M.B.; Chen, B.K.; Kim, P.S. Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc. Natl. Acad. Sci. USA 2000, 97, 13523–13525, doi:10.1073/pnas.240459697.
[120]  Bhattacharya, J.; Peters, P.J.; Clapham, P.R. Human immunodeficiency virus type 1 envelope glycoproteins that lack cytoplasmic domain cysteines: Impact on association with membrane lipid rafts and incorporation onto budding virus particles. J. Virol. 2004, 78, 5500–5506, doi:10.1128/JVI.78.10.5500-5506.2004.
[121]  Chan, W.E.; Lin, H.H.; Chen, S.S. Wild-Type viral replication potential of human immunodeficiency virus type 1 envelope mutants lacking palmitoylation signals. J. Virol. 2005, 79, 8374–8387, doi:10.1128/JVI.79.13.8374-8387.2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133