全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Fibers  2013 

Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications

DOI: 10.3390/fib1030070

Keywords: glass fiber materials, nonlinear optical fibers, mid-infrared

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report our recent progress on fabricating dehydrated tellurite glass fibers. Low OH content (1 ppm in weight) has been achieved in a new halogen-containing lead tellurite glass fiber. Low OH-induced attenuation of 10 dB/m has been confirmed in the range of 3–4 μm using three measurement methods. This shows the dehydrated halo-tellurite glass fiber is a promising candidate for nonlinear applications in a 2–5 μm region.

References

[1]  Schliesser, A.; Picqué, N.; H?nsch, T.W. Mid-infrared frequency combs. Nature Photon. 2012, 6, 440–449, doi:10.1038/nphoton.2012.142.
[2]  Russell, P.S.J. Photonic crystal fibers. Science 2003, 299, 358–362, doi:10.1126/science.1079280.
[3]  Ranka, J.K.; Windeler, R.S.; Stentz, A.J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 2000, 25, 25–27, doi:10.1364/OL.24.000092.
[4]  Serkland, D.K.; Kumar, P. Tunable fiber-optic parametric oscillator. Opt. Lett. 1999, 24, 92–94, doi:10.1364/OL.24.000092.
[5]  Cundiff, S.T.; Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 2003, 75, 325–342, doi:10.1103/RevModPhys.75.325.
[6]  Szigeti, B. Polarisability and dielectric constant of ionic crystals. Trans. Faraday Soc. 1949, 45, 155–166, doi:10.1039/tf9494500155.
[7]  Boniort, J.Y.; Brehm, C.; DuPont, P.H.; Guignot, D.; Le Sergent, C. Infrared Glass Optical Fibers for 4 and 10 Micron Bands. In Proceedings of the 6th European Conference on Optical Communication, York, UK, 16–19 September 1980; pp. 61–64.
[8]  Poulain, M.; Poulain, M.; Lucas, J.; Brun, P. Verres fluores au tetrafluorure de zirconium proprietes optiques d’un verre dope au Nd3+. Mat. Res. Bull. 1975, 10, 243–246. (in French), doi:10.1016/0025-5408(75)90106-3.
[9]  Kapany, N.S.; Simms, R.J. Recent developments of infrared fiber optics. Infrared Phys. 1965, 5, 69–75.
[10]  Wang, J.S.; Vogel, E.M.; Snitzer, E. Tellurite glass: A new candidate for fiber devices. Opt. Mater. 1994, 3, 187–203, doi:10.1016/0925-3467(94)90004-3.
[11]  Ghosh, G. Sellmeier coefficients and chromatic dispersions for some tellurite glasses. J. Am. Ceram. Soc. 1995, 78, 2828–2830, doi:10.1111/j.1151-2916.1995.tb08060.x.
[12]  Feng, X.; Loh, W.H.; Flanagan, J.C.; Camerlingo, A.; Dasgupta, S.; Petropoulos, P.; Horak, P.; Frampton, K.E.; White, N.M.; Price, J.H.V.; et al. Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications. Opt. Express 2008, 16, 13651–13656, doi:10.1364/OE.16.013651.
[13]  Feng, X.; Flanagan, J.C.; Frampton, K.E.; Petropoulos, P.; White, N.M.; Price, J.H.V.; Loh, W.H.; Rutt, H.N.; Richardson, D.J. Developing single-mode tellurite glass holey fiber for infrared nonlinear applications. Adv. Sci. Technol. 2008, 55, 108–117, doi:10.4028/www.scientific.net/AST.55.108.
[14]  France, P.W.; Carter, S.F.; Williams, J.R.; Beales, K.J.; Parker, J.M. OH-absorption in fluoride glass infra-red fibres. Electron. Lett. 1984, 20, 607–608, doi:10.1049/el:19840419.
[15]  Feng, X.; Tanabe, S.; Hanada, T. Hydroxyl groups in erbium-doped germanotellurite glasses. J. Non-Crystall. Solids 2001, 281, 48–54, doi:10.1016/S0022-3093(00)00429-4.
[16]  Humbach, O.; Fabian, H.; Grzesik, U.; Haken, U.; Heitmann, W. Analysis of OH absorption bands in synthetic silica. J. Non-Crystall. Solids 1996, 203, 19–26, doi:10.1016/0022-3093(96)00329-8.
[17]  Domachuk, P.; Wolchover, N.A.; Cronin-Golomb, M.; Wang, A.; George, A.K.; Cordeiro, C.M.B.; Knight, J.C.; Omenetto, F.G. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 2008, 16, 7161–168, doi:10.1364/OE.16.007161.
[18]  Ebendorff-Heidepriem, H.; Kuan, K.; Oermann, M.R.; Knight, K.; Monro, T.M. Extruded tellurite glass and fibers with low OH content for mid-infrared applications. Opt. Mater. Express 2012, 2, 432–442.
[19]  Comyns, A.E. Fluoride glasses; Wiley: Hoboken, NJ, USA, 1989; pp. 84–85.
[20]  Nagel, S.; MacChesney, J.B.; Walker, K. An overview of the modified chemical vapor deposition (MCVD) process and performance. IEEE Trans. Microwave Theory Tech. 1982, 18, 459–476.
[21]  O’Donnell, M.D.; Miller, C.A.; Furniss, D.; Tikhomirov, V.K.; Seddon, A.B. Fluorotellurite glasses with improved mid-infrared transmission. J. Non-Crystall. Solids 2003, 331, 48–57, doi:10.1016/j.jnoncrysol.2003.08.081.
[22]  Brown, T.L.; Lemay, H.E.; Burnsten, B.E. Chemistry—the Central Science., 6th ed. ed.; Prentice Hall: New York, NY, USA, 1994; p. 1017.
[23]  Boling, N.L.; Glass, A.J.; Owyoung, A. Empirical relationships for predicting non-linear refractive-index changes in optical solids. IEEE J. Quantum Electron. 1978, QE-14, 601–608.
[24]  Kiang, K.M.; Frampton, K.; Monro, T.M.; Moore, R.; Tucknott, J.; Hewak, D.W.; Richardson, D.J.; Rutt, H.N. Extruded single-mode non-silica glass holey optical fibres. Electron. Lett. 2002, 38, 546–547, doi:10.1049/el:20020421.
[25]  Shi, J.; Feng, X.; Horak, P.; Chen, K.K.; Teh, P.S.; Alam, S.-U.; Loh, W.H.; Richardson, D.J.; Ibsen, M. 1.06 μm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient. J. Lightwave Technol. 2011, 29, 3461–3469, doi:10.1109/JLT.2011.2169490.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413