全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Fibers  2014 

Advances on Optical Fiber Sensors

DOI: 10.3390/fib2010001

Keywords: laser, optical fiber, microstructured optical fibers

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this review paper some recent advances on optical fiber sensors are reported. In particular, fiber Bragg grating (FBG), long period gratings (LPGs), evanescent field and hollow core optical fiber sensors are mentioned. Examples of recent optical fiber sensors for the measurement of strain, temperature, displacement, air flow, pressure, liquid-level, magnetic field, and the determination of methadone, hydrocarbons, ethanol, and sucrose are briefly described.

References

[1]  Girard, S.; Mescia, L.; Vivona, M.; Laurent, A.; Ouerdane, Y.; Marcandella, C.; Prudenzano, F.; Boukenter, A; Robin, T.; Paillet, P; Goiffon, V.; Gaillardin, M.; Cadier, B.; Pinsard, E.; Cannas, M.; Boscaino, R. Design of radiation-hardened rare-earth doped amplifiers through a coupled experiment/simulation approach. J. Lightwave Technol. 2013, 31, 1247–1254, doi:10.1109/JLT.2013.2245304.
[2]  Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79, doi:10.1016/S1068-5200(02)00527-8.
[3]  Pelli, S.; Chiasera, A.; Ferrari, M.; Righini, G.C. Spectroscopic Techniques for Sensors. In An Introduction to Optoelectronic Sensors; Series in Optics and Photonics; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2009; Volume 7. ISBN: 978-981-283-412-6 981-283-412-5.
[4]  Cordeiro, C.M.B.; Franco, M.A.R.; Chesini, G.; Barretto, E.C.S.; Lwin, R.; Cruz, C.H.B.; Large, M.C.J. Microstructured-core optical fibre for evanescent sensing applications. Opt. Express 2006, 14, 13056–13066, doi:10.1364/OE.14.013056.
[5]  Jensen, J.; Hoiby, P.; Emiliyanov, G.; Bang, O.; Pedersen, L.H.; Bjarklev, A. Selective detection of antibodies in microstructured polymer optical fibers. Opt. Express 2005, 13, 5883–5889, doi:10.1364/OPEX.13.005883.
[6]  Jensen, J.B.; Pedersen, L.H.; Hoiby, P.E.; Nielsen, L.B.; Hansen, T.P.; Folkenberg, J.R.; Riishede, J.; Noordegraaf, D.; Nielsen, K.; Carlsen, A.; Bjarklev, A. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt. Lett. 2004, 29, 1974–1976, doi:10.1364/OL.29.001974.
[7]  Lehmann, H.; Brückner, S.; Kobelke, J.; Schwotzer, G.; Schuster, K.; Willsch, R. Toward photonic crystal fiber based distributed chemosensors. Proc. SPIE 2005, 5855, 419–422, doi:10.1117/12.623667.
[8]  Rothwell, J.H.; Flavin, D.A.; MacPherson, W.N.; Jones, J.D.C.; Knight, J.C.; Russell, P.St.J. Photonic sensing based on variation of propagation properties of photonic crystal fibres. Opt. Express 2006, 14, 12445–12450, doi:10.1364/OE.14.012445.
[9]  Ma, J; Bock, W.J.; Wang, Z. Y.; Hao, W; MacKinnon, S. M. Fiber-optic membrane fluorescent sensor based on photonic crystal fiber with a glass rod in the fiber end. In IEEE Sensors 2005, Irvine, CA, USA, 30 October–November 2005; pp. 1096–1099.
[10]  Cox, F.M.; Argyros, A.; Large, M.C.J. Liquid-filled hollow core microstructured polymer optical fiber. Opt. Express 2006, 14, 4135–4140, doi:10.1364/OE.14.004135.
[11]  Fini, J.M. Microstructure fibres for optical sensing in gases and liquids. Meas. Sci. Technol. 2004, 15, 1120–1128, doi:10.1088/0957-0233/15/6/011.
[12]  Monro, T.M.; Belardi, W.; Furusawa, K.; Baggett, J.C.; Broderick, N.G.R.; Richardson, D.J. Sensing with microstructured optical fibres. Meas. Sci. Technol. 2001, 12, 854–858, doi:10.1088/0957-0233/12/7/318.
[13]  Hill, K.O.; Meltz, G. Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 1997, 15, 1263–1276, doi:10.1109/50.618320.
[14]  Hill, K.O.; Fujii, Y.; Johnson, D.C.; Kawasaki, B.S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 1978, 32, 647–649, doi:10.1063/1.89881.
[15]  Culshaw, B.; Kersey, A. Fiber-optic sensing: A historical perspective. J. Lightwave Technol. 2008, 26, 1064–1078, doi:10.1109/JLT.0082.921915.
[16]  Guan, B.; Jin, L.; Zhang, Y.; Tam, H. Polarimetric heterodyning fiber grating laser sensors. J. Lightwave Technol. 2012, 30, 1097–1111, doi:10.1109/JLT.2011.2171916.
[17]  Dong, L.; Loh, W.H.; Caplen, J.E.; Minelly, J.D.; Hsu, K.; Reekie, L. Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers. Opt. Lett. 1997, 22, 694–696, doi:10.1364/OL.22.000694.
[18]  Hill, D.J.; Hodder, B.; DeFreitas, J.; Thomas, S.D.; Hickey, L. DFB Fibre-Laser Sensor Developments. In Proceedings of SPIE, the 17th International Conference on Optical Fibre Sensors, Bruges, Belgium, 23 May 2005; Volume 5855, pp. 904–907.
[19]  Li, J.; He, F.; Xu, T.; Wang, Y.; Liu, Y. High Performance Distributed Feedback Fiber Laser Sensor Array System. In Proceedings of Asia Communications and Photonics Conference Exhibition, Shanghai, China, 2–6 November 2009; Volume 7634, pp. 76340K:1–76340K:9.
[20]  Cranch, G.A.; Flockhart, G.; Kirkendall, C.K. Distributed feedback fiber laser strain sensors. IEEE Sens. J. 2008, 8, 1161–1172, doi:10.1109/JSEN.2008.926876.
[21]  Beverini, N.; Maccioni, E.; Morganti, M.; Stefani, V.; Falciai, R.; Trono, C. Fiber laser strain sensor device. J. Opt. A: Pure Appl. Opt. 2007, 9, 958–962, doi:10.1088/1464-4258/9/10/029.
[22]  Saitoh, K.; Koshiba, M.; Hasegawa, T.; Sasaoka, F. Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion. Opt. Express 2003, 11, 843–852, doi:10.1364/OE.11.000843.
[23]  Westbrook, P.S.; Eggleton, B.J.; Windeler, R.S.; Hale, A.; Strasser, T.A.; Burdge, G.L. Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings. IEEE Photonics Technol. Lett. 2000, 12, 495–497, doi:10.1109/68.841264.
[24]  Lee, B.H.; Liu, Y.; Lee, S.B.; Choi, S.S.; Jang, J.N. Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index. Opt. Lett. 1997, 22, 1769–1771, doi:10.1364/OL.22.001769.
[25]  Steivurzel, P.; Moore, E.D.; M?gi, E.C.; Kuhlmey, B.T.; Eggleton, B.J. Long period grating resonances in photonic bandgap fiber. Opt. Express 2006, 14, 3007–3014, doi:10.1364/OE.14.003007.
[26]  Lee, D.; Jung, Y.; Jeong, Y.S.; Oh, K.; Kobelke, J.; Schuster, K.; Kirchhof, J. Highly polarization-depend periodic coupling in mechanically induced long period grating over air-silica fibers. Opt. Lett. 2006, 31, 296–298, doi:10.1364/OL.31.000296.
[27]  Lim, J.H.; Lee, K.S.; Kim, J.C.; Lee, B.H. Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure. Opt. Lett. 2004, 29, 331–333, doi:10.1364/OL.29.000331.
[28]  Petrovic, J.S.; Dobb, H.; Mezentsev, V.K.; Kalli, K.; Webb, D.J.; Bennion, I. Sensitivity of LPGs in PCFs fabricated by an electric Arc to temperature, strain, and external refractive index. J. Lightwave Technol. 2007, 25, 1306–1312, doi:10.1109/JLT.2007.893912.
[29]  Zhao, C.L.; Xiao, L.; Ju, J.; Demokan, M.S.; Jin, W. Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor. J. Lightwave Technol. 2008, 26, 220–227.
[30]  Eggleton, B.J.; Westbrook, P.S.; Windeler, R.S.; Spalter, S.; Strasser, T.A. Grating resonances in air-silica microstructured optical fibers. Opt. Lett. 1999, 24, 1460–1462, doi:10.1364/OL.24.001460.
[31]  Erdogan, T. Cladding-mode resonances in short-and long-period fiber grating filters. J. Opt. Soc. Am. A 1997, 14, 1760–1773, doi:10.1364/JOSAA.14.001760.
[32]  Mescia, L. Design of long-period gratings in cladding-pumped microstructured optical fiber. J. Opt. Soc. Am. B 2008, 25, 1883–1839, doi:10.1364/JOSAB.25.001833.
[33]  Calò, G.; D’Orazio, A.; De Sario, M.; Mescia, L.; Petruzzelli, V.; Allegretti, L.; Palmisano, T.; Prudenzano, F. Improvement of the Pump Power Coupling in Double Cladding Photonic Crystal Fiber. In Proceedings of IEEE/LEOS Winter Topical Meeting Series, Sorrento, Italy, 14–16 January 2008; pp. 146–147.
[34]  Baek, S.; Roh, S.; Jeong, Y.; Lee, B. Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump-coupling long-period gratings. IEEE Photonics Technol. Lett. 2006, 18, 700–702, doi:10.1109/LPT.2006.871158.
[35]  Allsop, T.; Kalli, K.; Zhou, K.; Smith, G.; Laia, V.; Smith, G.; Dubov, M.; Webb, D.; Bennion, V. Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors. Opt. Commun. 2008, 281, 5092–5096.
[36]  Long, J.; Zhi, W.; Yange, L.; Guiyun, K.; Xiaoyi, D. Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers. Opt. Express 2008, 16, 21119–21131, doi:10.1364/OE.16.021119.
[37]  Shujing, L.; Long, J.; Wei, J.; Dongning, W.; Changrui, L.; Ying, W. Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser. Opt. Express 2010, 18, 5496–5503, doi:10.1364/OE.18.005496.
[38]  D’Orazio, A.; De Sario, M.; Mescia, L.; Petruzzelli, V.; Prudenzano, F. Design of double-clad ytterbium doped microstructured fibre laser. Appl. Surf. Sci. 2005, 248, 499–502, doi:10.1016/j.apsusc.2005.03.092.
[39]  Prudenzano, F. Erbium-doped hole-assisted optical fiber amplifier: Design and optimization. J. Lightwave Technol. 2005, 23, 330–340, doi:10.1109/JLT.2004.838808.
[40]  Sabaiean, M.; Nadgaran, H.; De Sario, M.; Mescia, L.; Prudenzano, F. Thermal effects on double clad octagonal Yb: glass fiber laser. Opt. Mater. 2009, 31, 1300–1305, doi:10.1016/j.optmat.2008.10.034.
[41]  Prudenzano, F.; Mescia, V.; Allegretti, L.; De Sario, M.; Palmisano, T.; Smektala, F.; Moizan, V.; Nazabal, V.; Troles, J. Design of Er3+-doped chalcogenide glass laser for MID-IR application. J. Non-Cryst. Solids 2009, 355, 1145–1148, doi:10.1016/j.jnoncrysol.2009.01.051.
[42]  Li, L.; Schülzgen, A.; Temyanko, V.L.; Morrell, M.M.; Sabet, S.; Li, H.; Moloney, J.V.; Peyghambarian, N. Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode. Applied Physics Letters. 2006, 88, 161106:1–161106:2.
[43]  Prudenzano, F.; Mescia, L.; Allegretti, L.; Moizan, V.; Nazabal, V.; Smektala, F. Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers. Opt. Mater. 2010, 33, 241–245, doi:10.1016/j.optmat.2010.10.046.
[44]  Mescia, L.; Smektala, F.; Prudenzano, F. New trends in amplifiers and sources via chalcogenide photonic crystal fibers. Int. J. Opt. 2012, 2012, E212091.
[45]  Prudenzano, F.; Mescia, L.; Di Tommaso, A.; Surico, M.; De Sario, M. Design and refinement of rare earth doped multicore fiber lasers. Opt. Mater. 2013, 35, 1941–1946, doi:10.1016/j.optmat.2012.11.023.
[46]  Rajan, G.; Ramakrishnan, M.; Semenova, Y.; Milenko, K.; Lesiak, P.; Domanski, A.W.; Wolinski, T.R.; Farrell, G. A photonic crystal fiber and fiber Bragg grating-based hybrid fiber-optic sensor. Syst. IEEE Sens. J. 2012, 12, 39–43, doi:10.1109/JSEN.2011.2114650.
[47]  Zou, Y.; Dong, X.; Lin, G.; Adhami, R. Wide range FBG displacement sensor based on twin-core fiber filter. J. Lightwave Technol. 2012, 30, 337–343, doi:10.1109/JLT.2011.2181334.
[48]  Zhu, Y.; Shum, P.; Lu, C.; Lacquet, M.; Swart, P.; Chtcherbakov, A.; Spammer, S. Temperature insensitive measurements of static displacements using a fiber Bragg grating. Opt. Express 2003, 11, 1918–1924, doi:10.1364/OE.11.001918.
[49]  Guo, T.; Shao, L.; Tam, H.-Y.; Krug, A.; Albert, J. Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling. Opt. Express 2009, 17, 20651–20660, doi:10.1364/OE.17.020651.
[50]  Shao, L.Y.; Albert, J. Compact fiber-optic vector inclinometer. Opt. Lett. 2010, 35, 1034–1036, doi:10.1364/OL.35.001034.
[51]  Zhou, W.; Zhou, Y.; Dong, X.; Shao, L.-Y.; Cheng, J.; Albert, J. Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer. IEEE Photonics J. 2012, 4, 1051–1057, doi:10.1109/JPHOT.2012.2202895.
[52]  Rong, Q.; Qiao, X.; Zhang, J.; Wang, R.; Hu, M.; Feng, Z. Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch. J. Lightwave Technol. 2012, 30, 1645–1650, doi:10.1109/JLT.2012.2188094.
[53]  Gouveia, C.; Jorge, P.; Baptista, J.M.; Frazao, O. Temperature-independent curvature sensor using FBG cladding modes based on a core misaligned splice. IEEE Photonics Technol. Lett. 2011, 23, 804–806, doi:10.1109/LPT.2011.2138125.
[54]  Qi, T.; Xiao, S.; Shi, J.; Yi, L.; Zhou, Z.; Bi, M.; Hu, W. Cladding-mode backward-recoupling-based displacement sensor incorporating fiber up taper and Bragg grating. IEEE Photonics J. 2013, 5, 7100608, doi:10.1109/JPHOT.2013.2274770.
[55]  Zhao, Y.; Chen, K.; Yang, J. Novel target type flowmeter based on a differential fiber Bragg grating sensor. Measurement 2005, 38, 230–235, doi:10.1016/j.measurement.2005.07.005.
[56]  Jewart, C.; McMillen, B.; Cho, S.K.; Chen, K.P. X-probe flow using self-powered active fiber Bragg gratings. Sens. Actuators A Phys. 2006, 127, 63–68, doi:10.1016/j.sna.2005.12.024.
[57]  Byrne, G.D.; James, S.W.; Tatam, R.P. A Bragg grating based fibre optic reference beam laser Doppler anemometer. Meas. Sci. Technol. 2001, 12, 909–913.
[58]  Lien, V.; Vollmer, F. Microfluidic flow rate detection based on integrated optical fiber cantilever. Lab Chip 2007, 7, 1352–1356, doi:10.1039/b706944h.
[59]  Lee, C.L.; Hong, W.Y.; Hsieh, H.J.; Weng, Z.Y. Air gap fiber Fabry-Pe′ rot interferometer for highly sensitive microairflow sensing. IEEE Photonics Technol. Lett. 2011, 23, 905–907, doi:10.1109/LPT.2011.2142413.
[60]  Dong, X.; Zhou, Y.; Zhou, W.; Cheng, J.; Su, Z. Compact anemometer using silver-coated fiber Bragg grating. IEEE Photonics J. 2012, 5, 1381–1386.
[61]  Kreger, S.; Calvert, S.; Udd, E. High Pressure Sensing Using Fiber Bragg Gratings Written in Birefringent Side Hole Fiber. In Proceedings of the 15th Optical Fiber Sensors Conference Technical Digest, Portland, OR, USA, 10 May 2002; pp. 355–358.
[62]  Chen, T.; Chen, R.; Jewart, C.; Zhang, B.; Cook, K.; Canning, J.; Chen, K.P. Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing. Opt. Lett. 2011, 36, 3542–3544, doi:10.1364/OL.36.003542.
[63]  Jewart, C.M.; Wang, Q.; Canning, J.; Grobnic, D.; Mihailov, S.J.; Chen, K.P. Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing. Opt. Lett. 2010, 35, 1443–1445, doi:10.1364/OL.35.001443.
[64]  Chmielewska, E.; Urbanczyk, W.; Bock, W.J. Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefringent side-hole fiber. Appl. Opt. 2003, 42, 6284–6291, doi:10.1364/AO.42.006284.
[65]  Zhang, Q.; Liu, N.; Fink, T.; Li, H.; Peng, W.; Han, M. Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber. IEEE Photonics Technol. Lett. 2012, 24, 1519–1522.
[66]  Khaliq, S.; James, S.W.; Tatam, R.P. Fiber-optic liquid-level sensor using a long-period grating. Opt. Lett. 2001, 26, 1224–1226, doi:10.1364/OL.26.001224.
[67]  Yun, B.; Chen, N.; Cui, Y. Highly sensitive liquid-level sensor based on etched fiber Bragg grating. IEEE Photonics Technol. Lett. 2007, 19, 1747–1749, doi:10.1109/LPT.2007.905093.
[68]  Fu, H.; Shu, X.; Zhang, A.; Liu, W.; Zhang, L.; He, S.; Bennion, I. Implementation and characterization of liquid-level sensor based on a long-period fiber grating mach-zehnder interferometer. IEEE Sens. J. 2011, 11, 2878–2883, doi:10.1109/JSEN.2011.2145416.
[69]  Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539, doi:10.1007/s00216-003-2101-0.
[70]  R?ther, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. In Springer Tracts in Modern Physics; Springer-Verlag: Berlin, Germany, 1988; Volume 11.
[71]  Kretschmann, E. Die Bestimmung optischer Konstanten vonMetallen durch anregung von oberfl?chenplasmaschwingungen. Zeitschrift für Physik A: Hadrons and Nuclei 1971, 241, 313–324.
[72]  Dostáleka, J.; ?tyrokya, J.; Homolaa, J.; Bryndab, E.; Skalskya, M.; Nekvindovác, P.; ?pirkovác, J.; ?kvord, J.; Schr?fele, J. Surface plasmon resonance biosensor based on integrated optical waveguide. Sens. Actuators B Chem. 2001, 76, 8–12, doi:10.1016/S0925-4005(01)00559-7.
[73]  Gupta, B.D.; Verma, R.K. Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications. J. Sens. 2009, doi:10.1155/2009/979761.
[74]  Obando, L.; Gentleman, D.; Holloway, J.; Booksh, K. Manufacture of robust surface plasmon resonance fiber optic based dip-probes. Sens. Actuators B Chem. 2004, 100, 439–449, doi:10.1016/j.snb.2004.02.020.
[75]  Esteban, ó.; Díaz-Herrera, N.; Navarrete, M.; González-Cano, A. Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration. Appl. Opt. 2006, 45, 7294–7298, doi:10.1364/AO.45.007294.
[76]  He, Y.J.; Lo, Y.L.; Huang, J.F. Optical-fiber surface plasmon-resonance sensor employing long period fiber gratings in multiplexing. J. Opt. Soc. Am. B 2006, 23, 801–811, doi:10.1364/JOSAB.23.000801.
[77]  Spacáková, B.; Homola, J. Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating. Opt. Express 2009, 17, 23254–23264, doi:10.1364/OE.17.023254.
[78]  Lu, Y.C.; Huang, W.P.; Jian, S.S. Influence of mode loss on the feasibility of grating-assisted optical fiber surface plasmon resonance refractive index sensors. J. Lightwave Technol. 2009, 27, 4804–4808, doi:10.1109/JLT.2009.2026721.
[79]  Caucheteur, C.; Shevchenko, Y.; Shao, L.-Y.; Wuilpart, M.; Albert, J. High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement. Opt. Express 2011, 19, 1656–1664, doi:10.1364/OE.19.001656.
[80]  Schuster, T.; Herschel, R.; Neumann, N.; Sch?ffer, C.G. Miniaturized long-period fiber grating assisted surface Plasmon resonance sensor. J. Lightwave Technol. 2012, 30, 1003–1008.
[81]  Miao, Y.; Zhang, K.; Liu, B.; Lin, W.; Zhang, H.; Lu, Y.; Yao, J. Ferrofluid-infiltrated microstructured optical fiber long-period grating. IEEE Photonics Technol. Lett. 2013, 25, 306–309, doi:10.1109/LPT.2012.2231669.
[82]  Mescia, L.; Palmisano, T.; Surico, M.; Prudenzano, F. Long-period gratings for the optimization of cladding-pumped microstructured optical fiber laser. Opt. Mater. 2010, 33, 236–240, doi:10.1016/j.optmat.2010.07.018.
[83]  Prudenzano, F.; Mescia, L.; Palmisano, T.; Surico, M.; De Sario, M.; Righini, G.C. Optimization of pump absorption in MOF lasers via multi-long-period gratings: Design strategies. Appl. Opt. 2012, 51, 1410–1420.
[84]  Slavík, R.; Kulishov, M.; Park, Y.; Aza?a, J. Long-period fiber-grating-based filter configuration enabling arbitrary linear filtering characteristics. Opt. Lett. 2009, 34, 1045–1047, doi:10.1364/OL.34.001045.
[85]  Kim, S.J.; Eom, T.J.; Lee, B.H.; Park, C.S. Optical temporal encoding/decoding of short pulses using cascaded long period fiber gratings. Opt. Express 2003, 11, 3034–3040, doi:10.1364/OE.11.003034.
[86]  Ashrafi, R.; Li, M.; Aza?a, J. Tsymbol/s optical coding based on long-period gratings. IEEE Photonics Technol. Lett. 2013, 25, 910–913, doi:10.1109/LPT.2013.2255034.
[87]  Slavik, R.; Park, Y.; Kulishov, M.; Aza?a, J. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings. Opt. Lett. 2009, 34, 3116–3118, doi:10.1364/OL.34.003116.
[88]  Ashrafi, R.; Li, M.; Aza?a, J. Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators. IEEE Photonics J. 2013, 5, 7100311, doi:10.1109/JPHOT.2013.2256117.
[89]  Shu, X.; Allsop, T.; Gwandu, B.; Zhang, L.; Bennion, I. High-temperature sensitivity of long-period gratings in B-Ge codoped fiber. IEEE Photonics Technol. Lett. 2001, 13, 818–820, doi:10.1109/68.935814.
[90]  Wang, Z.; Ramachandran, S. Ultrasensitive long-period fiber gratings for broadband modulators and sensors. Opt. Lett. 2003, 28, 2458–2460, doi:10.1364/OL.28.002458.
[91]  Steinvurzel, P.; Moore, E.D.; M?gi, E.C.; Eggleton, B.J. Tuning properties of long period gratings in photonic bandgap fibers. Opt. Lett. 2006, 31, 2103–2105, doi:10.1364/OL.31.002103.
[92]  Potyrailo, R.A.; Hobbs, S.E.; Hieftje, G.M. Optical waveguide sensors in analytical chemistry: Today’s instrumentation, applications and trends for future development. Fresenius J. Anal.Chem. 1998, 362, 349–373, doi:10.1007/s002160051086.
[93]  McAdam, G.; Newman, P.J.; McKenzie, I.; Davis, C.; Hinton, B.R.W. Fiber optic sensors for detection of corrosion within Aircraft. Struct. Health Monit. 2005, 4, 47–56, doi:10.1177/1475921705049745.
[94]  Mendoza, E.A.; Khalil, A.N.; Sun, Z.; Robinson, D.; Syracuse, S.J.; Egalon, C.O.; Gunther, M.F.; Lieberman, R.A. Embeddable distributed moisture and pH sensors for nondestructive inspection of aircraft lap joints. Proc. SPIE 1995, 2455, 102–112, doi:10.1117/12.213565.
[95]  Mendoza, E.A.; Robinson, D.; Lieberman, R.A. Miniaturized integrated optic chemical sensors for environmental monitoring and remediation. Proc. SPIE 1996, 2836, 76–87, doi:10.1117/12.260580.
[96]  Cordero, S.R.; Beshay, M.; Low, A.; Mukamal, H.; Ruiz, D.; Lieberman, R.A. A distributed fiber optic chemical sensor for hydrogen cyanide detection. Proc. SPIE 2005, 5993, 599302, doi:10.1117/12.630958.
[97]  Cordero, S.R.; Mukamal, H.; Low, A.; Locke, E.P.; Lieberman, R.A. A fiber optic sensor for nerve agent. Proc. SPIE 2006, 6378, 63780U–63783U.
[98]  Mukamal, H.; Cordero, S.R.; Ruiz, D.; Beshay, M.; Lieberman, R.A. Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection. Proc. SPIE 2005, 6004, 600406, doi:10.1117/12.630959.
[99]  Ghandehari, M.; Vimer, C.S. In situ monitoring of pH level with fiber optic evanescent field spectroscopy. NDT E Int. 2004, 37, 611–616, doi:10.1016/j.ndteint.2004.03.007.
[100]  Sinchenko, E.; Gibbs, W.E.K.; Mazzolini, A.P.; Stoddart, P.R. The effect of the cladding refractive index on an optical fiber evanescent-wave sensor. J. Lightwave Technol. 2013, 31, 3251–3257.
[101]  Stewart, G.; Culshaw, B. Optical waveguide modelling and design for evanescent field chemical sensors. Opt. Quantum Electron. 1994, 26, S249–S259, doi:10.1007/BF00384677.
[102]  Schwotzer, G.; Latka, I.; Lehmann, H.; Willsch, R. Optical sensing of hydrocarbons in air or in water using UV absorption in the evanescnt field of fibers. Sens. Actuators B 1997, 38–39, 150–153.
[103]  Gupta, B.D.; Dodeja, H.; Tomar, A.K. Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Opt. Quantum Electron. 1996, 28, 1629–1639, doi:10.1007/BF00331053.
[104]  Zimmerman, B.; Burck, J.; Ache, H.J. Studies on siloxane polymers for NIR-evanescent wave absorbance sensor. Sens. Actuators B 1997, 41, 45–54, doi:10.1016/S0925-4005(97)80276-6.
[105]  Qing, D.-K.; Yamaguchi, I. Analysis of the sensitivity of optical waveguide chemical sensor for TM modes by the group-index method. J. Opt. Soc. Am. B 1999, 16, 1359–1369, doi:10.1364/JOSAB.16.001359.
[106]  Buerck, J.; Roth, S.; Kraemer, K.; Scholz, M.; Klaas, N. Application of a fiber-optic NIR-EFA sensor system for in situ monitoring of aromatic hydrocarbons in contaminated groundwater. J. Hazard. Mater. 2001, 83, 11–28, doi:10.1016/S0304-3894(00)00335-6.
[107]  Prudenzano, F.; Mescia, L.; Allegretti, L.A.; Calò, G.; D?Orazio, A.; De Sario, M.; Palmisano, T.; Petruzzelli, V. Design of an optical sensor array for hydrocarbon monitoring. Opt. Quantum Electron. 2009, 41, 55–68, doi:10.1007/s11082-009-9322-1.
[108]  Mescia, L.; Prudenzano, F.; Allegretti, L.; Calò, G.; De Sario, M.; D’Orazio, A.; Maiorano, L.; Palmisano, T.; Petruzzelli, V. Design of silica-based photonic crystal fiber for biosensing applications. J. Non-Cryst. Solids 2009, 355, 1163–1166, doi:10.1016/j.jnoncrysol.2009.01.047.
[109]  Palmisano, T.; Prudenzano, F.; Warren-Smith, S.C.; Monro, T.M. Design of exposed-core fiber for methadone monitoring in biological fluids. J. Non-Cryst. Solids 2011, 357, 2000–2004, doi:10.1016/j.jnoncrysol.2010.12.068.
[110]  Kostecki, R.; Ebendorff-Heidepriem, H.; Davis, C.; McAdam, G.; Warren-Smith, S.C.; Monro, T.M. Silica exposed-core microstructured optical fibers. Opt. Mater. Express 2012, 2, 1538–1547, doi:10.1364/OME.2.001538.
[111]  Eggleton, B.J.; Kerbage, C.; Westbrook, P.S.; Windeler, R.S.; Hale, A. Microstructured optical fiber devices. Opt. Express 2001, 9, 698–713, doi:10.1364/OE.9.000698.
[112]  Bise, R.T.; Windeler, R.S.; Kranz, K.S.; Kerbage, C.; Eggleton, B.J.; Trevor., D.J. Tunable photonic band gap fiber. In Proc. Opt. Fiber Commun. Conf. Exhib. OSA Trends Opt. Photon. (Opt. Soc.Am. Washington); 2002; Volume 70, pp. 466–468.
[113]  Wang, Y.; Tan, X.; Jin, W.; Ying, D.; Hoo, Y.L.; Liu, S. Temperature controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications. Opt. Lett. 2010, 35, 88–90, doi:10.1364/OL.35.000088.
[114]  Yiou, S.; Delaye, P.; Rouvie, A.; Chinaud, J.; Frey, R.; Roosen, G.; Viale, P.; Février, S.; Roy, P.; Auguste, J.-L.; Blondy, J.-M. Stimulated Raman scattering in an ethanol core microstructured optical fiber. Opt. Express 2005, 13, 4786–4791, doi:10.1364/OPEX.13.004786.
[115]  Huang, Y.; Xu, Y.; Yariv, A. Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 2004, 85, 5182–5184, doi:10.1063/1.1828593.
[116]  Cordeiro, C.M.B.; dos Santos, E.M.; Cruz, C.H.B.; de Matos, C.J.S.; Ferreira, D.S. Lateral access to the holes of photonic crystal fibers—Selective filling and sensing applications. Opt. Express 2006, 14, 8403–8412, doi:10.1364/OE.14.008403.
[117]  Meneghini, C.; Caron, S.; Poulin, A.C.J.; Proulx, A.; émond, V.; Paradis, P.; Paré, C.; Fougères, A. Determination of ethanol concentration by Raman spectroscopy in liquid-core microstructured optical fiber. IEEE Sens. J. 2008, 8, 1250–1255, doi:10.1109/JSEN.2008.926172.
[118]  Ren, H.C.; Vollmer, F.; Arnold, S.; Libchaber, A. High-Q microsphere biosensor-analysis for adsorption ofrodlike bacteria. Opt. Express 2007, 15, 17410–17423, doi:10.1364/OE.15.017410.
[119]  Vollomer, F.; Stephen, A. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat. Methods 2008, 5, 591–596, doi:10.1038/nmeth.1221.
[120]  Yang, L.; Vahala, K.J. Gain functionalization of silica microresonators. Opt. Lett. 2008, 28, 592–594, doi:10.1364/OL.28.000592.
[121]  Murugan, G.S.; Zervas, M.N.; Panitchob, Y.; Wilkinson, J.S. Integrated Nd-doped borosilicate glass microsphere laser. Opt. Lett. 2011, 36, 73–75.
[122]  Chen, S.Y.; Sun, T.; Grattan, K.T.V.; Annapurna, K.; Sen, R. Characteristics of Er and ErYbCr doped phosphate microsphere fibre lasers. Opt. Commun. 2009, 282, 3765–3769, doi:10.1016/j.optcom.2009.06.019.
[123]  Feron, P. Whispering Gallery Mode Lasers in Erbium doped fluoride glasses. Annales de la Fondation Louis de Broglie 2004, 29, 317–329.
[124]  Nunzi Conti, G.; Chiasera, A.; Ghisa, L.; Berneschi, S.; Brenci, M.; Dumeige, Y.; Pelli, S.; Sebastiani, S.; Feron, P.; Ferrari, M.; Righini, G.C. Spectroscopic and lasing properties of Er3+ doped glass microspheres. J. Non-Cryst. Solids 2006, 352, 2360–2363, doi:10.1016/j.jnoncrysol.2006.01.089.
[125]  Elliot, G.R.; Hewak, D.W.; Senthil Murugan, G.; Wilkinson, J.S. Chalcogenide glass microspheres; their production, characterization and potential. Opt. Express 2007, 15, 17542–17553, doi:10.1364/OE.15.017542.
[126]  Mescia, L.; Prudenzano, F.; De Sario, M.; Palmisano, T.; Ferrari, M.; Righini, G.C. Design of rare-earth-doped microspheres. IEEE Photonics Technol. Lett. 2010, 22, 422–424, doi:10.1109/LPT.2009.2039932.
[127]  Kouki, T.; Makoto, T. Optical microsphere amplification system. Opt. Lett. 2007, 32, 3197–3199, doi:10.1364/OL.32.003197.
[128]  Boucher, Y.G.; Feron, P. Generalized transfer function: A simple model applied to active single-mode microring resonators. Opt. Commun. 2009, 282, 3940–3947, doi:10.1016/j.optcom.2009.06.048.
[129]  Mescia, L.; Bia, P.; De Sario, M.; Di Tommaso, A.; Prudenzano, F. Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator. Opt. Express 2012, 20, 7616–7629.
[130]  Mescia, L.; Bia, P.; Losito, O.; Prudenzano, F. Design of Mid-IR Er3+-doped microsphere laser. IEEE Photonics J. 2013, 5, 1501308.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413