全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Foods  2013 

Suppression of Listeria monocytogenes by the Native Micro-Flora in Teewurst Sausage

DOI: 10.3390/foods2040478

Keywords: teewurst, L. monocytogenes, micro-flora, PCR-DGGE

Full-Text   Cite this paper   Add to My Lib

Abstract:

Modern consumers are interested in the use of non-chemical methods to control pathogens when heat sterilization is not an option. Such is the case with teewurst sausage, a raw spreadable sausage and a popular German commodity. Although Listeria was not found in teewurst, the optimal microbial growing conditions of teewurst coupled with the ubiquity of L. monocytogenes in nature, makes the possibility of contamination of products very possible. This pilot study was conducted to examine teewurst’s native micro-flora’s ability to suppress the outgrowth of L. monocytogenes at 10 °C using standard plate counts and PCR-DGGE. Traditional plating methods showed L. monocytogenes growth significantly decreased when in competition with the teewurst’s native micro-flora ( p < 0.05). The native micro-flora of the teewurst suppressed the overall growth of L. monocytogenes by an average of two logs, under these conditions. Denaturing Gradient Gel Electrophoresis (DGGE) amplicons with unique banding patterns were extracted from DGGE gel for identification. Brochothrix thermosphacta and Lactobacillus curvatus were identified as a part of the teewurst’s native micro-flora. Although the native micro-flora did not decrease L. monocytogenes to below limits of detection, it was enough of a decrease to warrant further investigation.

References

[1]  Brandriff, K. Pathogens and Contaminants: A Focus on ; U.S. National Agriculture Library, Food Safety Research Information Office: Beltsville, MD, USA, 2003.
[2]  Vazquez-Boland, J.A.; Khun, M.; Berche, P.; Charraborty, T.; Dominguez-Bernal, G.; Goebel, W.; Gonzalez-Zorn, B.; Wehlan, J.; Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 2001, 14, 584–640, doi:10.1128/CMR.14.3.584-640.2001.
[3]  Farber, J.M.; Peterkin, P.I. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 1991, 55, 476–511.
[4]  Ammon, A.; Petersen, L.R.; Karch, H. A large outbreak of haemolytic uremic syndrome caused by an unusual sorbitol-fermenting strain of Eschericia coli O157:H-. J. Infect. Dis. 1999, 179, 1274–1277, doi:10.1086/314715.
[5]  Werber, D.; Behnke, S.C.; Furth, A.; Merle, R.; Menzler, S.; Glaser, S.; Kreienbrock, L.; Prager, R.; Tschape, H.; Roggentin, P.; et al. Shiga toxin producing Eschericia coli infection in Germany: Different risk factors for different age groups. Am. J. Epidemiol. 2007, 165, 425–434.
[6]  Dourou, D.; Porto-Fett, A.C.; Shoyer, B.; Call, J.E.; Nychas, G.J.; Illg, E.K.; Luchansky, J.B. Behavior of Excherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium in teewurst, a raw spreadable sausage. Int. J. Food Microbiol. 2009, 130, 245–250, doi:10.1016/j.ijfoodmicro.2009.01.037.
[7]  Freitag, N.E.; Port, G.C.; Miner, M.D. Listeria monocytogenes—From saprophye to intracellular pathogen. Nat. Rev. Microbiol. 2009, 7, 623–628, doi:10.1038/nrmicro2171.
[8]  Porto, A.C.S.; Franco, B.D.G.M.; Sant’Anna, E.S.; Call, J.E.; Piva, A.; Luchansky, J.B. Viability of a five-strain mixture of Listeria monocytogenes in vacuum-sealed packages of frankfurters, commercially-prepared with and without 2% or 3% added potassium lactate, during extended storage at 4 and 10 °C. J. Food Prot. 2002, 65, 308–315.
[9]  Muyzer, G.; de Waal, E.C.; Uitterlinder, A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 694–700.
[10]  Cocolin, L.; Rantsiou, K.; Iacumin, L.; Cantoni, C.; Comi, G. Direct identification in food samples of Listeria spp. and Listeria monocytogenes by molecular methods. Appl. Environ. Microbiol. 2002, 68, 6273–6282, doi:10.1128/AEM.68.12.6273-6282.2002.
[11]  Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220.
[12]  Hibbing, M.E.; Fauqua, C.; Parsek, M.R.; Peterson, S.B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 2010, 8, 15–25, doi:10.1038/nrmicro2259.
[13]  Adak, G.K.; Long, S.M.; O’Brian, S.J. Trends in indigenous food borne disease and deaths, England and Wales: 1992 to 2000. Gut 2002, 51, 832–841, doi:10.1136/gut.51.6.832.
[14]  Register, F. United States Department of Agriculture: Washington, DC, USA, 2003.
[15]  Al-Zeyara, S.A.; Jarvis, B.; Mackey, B.M. The inhibitory effect of natural microflora of food on growth of Listeria monocytogenes in enrichment broths. Int. J. Food Microbiol. 2011, 145, 98–105, doi:10.1016/j.ijfoodmicro.2010.11.036.
[16]  Ercolini, D.; Moschetti, G.; Blaiotta, G.; Coppola, S. The potential of a polyphasic PCR-DGGE approach in evaluating microbial diversity of natural whey cultures for water-buffalo Mozzarella cheese production: Bias of culture-dependent and culture-independent analyses. Syst. Appl. Microbiol. 2001, 24, 610–617, doi:10.1078/0723-2020-00076.
[17]  Kowalchuk, G.A.; Stephen, J.R.; de Boer, W.; Prosser, J.I.; Embley, T.M.; Woldendrop, J.W. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 1997, 63, 1489–1497.
[18]  De Vuyst, L.; Leroy, F. Bacteriocins from lactic acid bacteria: Production, purification and food applications. J. Mol. Microbiol. Biotechnol. 2007, 13, 194–199, doi:10.1159/000104752.
[19]  Galvez, A.; Lopez, R.L.; Abriouel, H.; Valdivia, E.; Omar, N.B. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 2008, 28, 125–152, doi:10.1080/07388550802107202.
[20]  Gilor, O.; Etzion, A.; Riley, M.A. The dual role of bacteriocins as anti- and probiotics. Appl. Microbiol. Biotechnol. 2008, 81, 591–606, doi:10.1007/s00253-008-1726-5.
[21]  Klaenhammer, T.R. Bacteriocins of lactic acid bacteria. Biochimie 1988, 70, 337–349, doi:10.1016/0300-9084(88)90206-4.
[22]  Zhang, J.; Liu, G.; Li, P.; Qu, Y. Pentocin 31-1, a novel meat-borne bacteriocin and its application as biopreservative in chill-stored tray-packaged pork meat. Food Control 2010, 21, 198–202, doi:10.1016/j.foodcont.2009.05.010.
[23]  Hartmann, H.A.; Wilke, T.; Erdmann, R. Efficacy of bacteriocin-containing cell-free culture supernatants from lactic acid bacteria to control Listeria monocytogenes in food. Int. J. Food Microbiol. 2011, 146, 192–199, doi:10.1016/j.ijfoodmicro.2011.02.031.
[24]  Pennacchia, C.; Ercolini, D.; Villani, F. Development of a Real-Time PCR assay for the specific detection of Brochothrix thermosphacta in fresh and spoiled raw meat. Int. J. Food Microbiol. 2009, 134, 230–235, doi:10.1016/j.ijfoodmicro.2009.07.005.
[25]  Verluyten, J.; Messens, W.; de Vuyst, L. Sodium chloride reduces production of curvacin A, a bacteriocin produced by Lactobacillus curvatus strain LTH 1174, originating from fermented sausage. Appl. Environ. Microbiol. 2004, 70, 2271–2278, doi:10.1128/AEM.70.4.2271-2278.2004.
[26]  Dowd, S.E.; Sun, Y.; Wolcott, R.D.; Domingo, A.; Carroll, J.A. Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: Bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog. Dis. 2008, 5, 459–472, doi:10.1089/fpd.2008.0107.
[27]  Center for Disease Control and Prevention (CDC). Listeriosis Information; Center for Disease Control and Prevention: Atlanta, GA, USA, 2010.
[28]  Cocolin, L.; Comi, G. Use of a culture-independent molecular method to study the ecology of Yersinia spp. in food. Int. J. Food Microbiol. 2005, 105, 71–82, doi:10.1016/j.ijfoodmicro.2005.05.006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133