全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Foods  2013 

Microbial Profile of Soil-Free versus In-Soil Grown Lettuce and Intervention Methodologies to Combat Pathogen Surrogates and Spoilage Microorganisms on Lettuce

DOI: 10.3390/foods2040488

Keywords: organic produce, aquaponics, microbial quality, interventions, soilless produce, lettuce, Salmonella, E. coli

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aquaponics is an effective method to practice sustainable agriculture and is gaining popularity in the US; however, the microbial safety of aquaponically grown produce needs to be ascertained. Aquaponics is a unique marriage of fish production and soil-free produce (e.g., leafy greens) production. Fish are raised in fresh water tanks that are connected to water filled beds where fruits and vegetables are grown. The fish bi-products create nutrient-rich water that provides the key elements for the growth of plants and vegetables. The objective of this study was to perform a comparative analysis of the microbial safety and quality of aquaponic lettuce and soil grown lettuce (conventional, bagged, certified organic, and field lettuce). Following this, an intervention study was performed to combat foodborne pathogen surrogates ( Salmonella and E. coli), spoilage, and fecal microorganisms using 2.5% acetic acid. The results of the comparative analysis study showed that aquaponically grown lettuce had significantly lower concentration of spoilage and fecal microorganisms compared to in-soil grown lettuce. The intervention study showed that diluted vinegar (2.5% acetic acid) significantly reduced Salmonella, E. coli, coliforms, and spoilage microorganisms on fresh lettuce by 2 to 3 log CFU/g. Irrespective of growing methods (in-soil or soilless), it is crucial to incorporate good agricultural practices to reduce microbial contamination on fresh produce. The intervention employed in this study can be proposed to small farmers and consumers to improve quality and safety of leafy greens.

References

[1]  Investigation Update: Multistate Outbreak of E. coli O157:H7 Infections Linked to Romaine Lettuce. Available online: http://www.cdc.gov/ecoli/2011/ecoliO157/romainelettuce/032312/index.html (accessed on 11 August 2013).
[2]  Investigation Update: Multistate Outbreak of Human E. coli O145 Infections Linked to Shredded Romaine Lettuce from a Single Processing Facility. Available online: http://www.cdc.gov/ecoli/2010/ecoli_o145/index.html (accessed on 11 August 2013).
[3]  Lienemann, T.; Niskanen, T.; Guedes, S.; Siitonen, A.; Kuusi, M.; Rimhanen-Finne, R. Iceberg lettuce as suggested source of a nationwide outbreak caused by two Salmonella serotypes, Newport and Reading, in Finland in 2008. J. Food Prot. 2011, 74, 1035–1040, doi:10.4315/0362-028X.JFP-10-455.
[4]  Outbreaks of Gastroenteritis Linked to Lettuce. Available online: http://www.eurosurveillance.org/images/dynamic/EE/V15N06/art19484.pdf (accessed on 14 July 2013).
[5]  Oliveira, M.; Usall, J.; Vi?as, I.; Anguera, M.; Gatius, F.; Abadias, M. Microbiological quality of fresh lettuce from organic and conventional production. Food Microbiol. 2010, 27, 679–684, doi:10.1016/j.fm.2010.03.008.
[6]  National Organic Program. Available online: http://www.ams.usda.gov/AMSv1.0/ams.fetchTemplateData.do?template=TemplateA&navID=NationalOrganicProgram&leftNav=NationalOrganicProgram&page=NOPNationalOrganicProgramHome&acct=AMSPW (accessed on 11 July 2013).
[7]  Food Safety Modernization Act. Available online: http://www.fda.gov/Food/FoodSafety/FSMA/default.htm (accessed on 11 July 2013).
[8]  Kader, A.A. Postharvest Technology of Horticultural Crops, 3rd ed. ed.; University of California: Davis, CA, USA, 2002.
[9]  Stenstrom, T.A. Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles. Appl. Environ. Microbiol. 1989, 55, 142–147.
[10]  Wei, J.; Jin, Y.; Sims, T.; Kniel, K.E. Murine norovirus-1 internalization into Lactuca sativa during irrigation. Appl. Environ. Microbiol. 2011, 77, 2508–2512, doi:10.1128/AEM.02701-10.
[11]  Jiang, X.; Morgan, J.; Doyle, M.P. Fate of Escherichia coli O157:H7 in manure-amended soil. Appl. Environ. Microbiol. 2002, 68, 2605–2609, doi:10.1128/AEM.68.5.2605-2609.2002.
[12]  Guo, X.; Chen, J.; Brackett, R.E.; Beuchat, L.R. Survival of Salmonella on tomatoes stored at high relative humidity, in soil, and on tomatoes in contact with soil. J. Food Prot. 2002, 65, 274–279.
[13]  A Preliminary Study of Microbial Water Quality Related to Food Safety in Recirculating Aquaponic Fish and Vegetable Production Systems. Available online: http://www.ctahr.hawaii.edu/oc/freepubs/pdf/FST-51.pdf (accessed on 21 October 2013).
[14]  On-Farm Food Safety: Aquaponics. Available online: http://www.ctahr.hawaii.edu/oc/freepubs/pdf/FST-38.pdf (accessed on 21 October 2013).
[15]  Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture. Available online: http://www2.ca.uky.edu/wkrec/454fs.PDF (accessed on 21 October 2013).
[16]  Goodman, E.R. Aquaponics: Community and Economic Development. Masters Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2011.
[17]  Zerio-Egli, C. Economical Post-Harvest Practices for Leafy Greens Grown on Texas Small Farms. Master’s Thesis, University of Houston, Houston, TX, USA, 2012.
[18]  Guidance for Industry. Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables. Available online: http://www.fda.gov/downloads/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/ProduceandPlanProducts/UCM169112.pdf (accessed on 11 August 2013).
[19]  Entani, E.; Asai, M.; Tsujihata, S.; Tsukamoto, Y.; Ohta, M. Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7. J. Food Prot. 1998, 174, 953–959.
[20]  Wu, F.; Doyle, M.; Beuchat, L.; Wells, J.; Mintz, E.; Swaminathan, B. Fate of Shigella sonnei on parsley and methods of disinfection. J. Food Prot. 2000, 174, 568–572.
[21]  Rutala, W.A.; Barbee, S.L.; Aguiar, N.C.; Sobsey, M.D.; Weber, D.J. Antimicrobial activity of home disinfectants and natural products against potential human pathogens. Infect. Control Hosp. Epidemiol. 2000, 21, 33–38.
[22]  FDA Survey of Domestic Fresh Produce-Domestic Produce Assignment. Available online: http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ProducePlantProducts/ucm118297.htm (accessed on 3 October 2013).
[23]  Ailes, E.C.; Leon, J.S.; Jaykus, L.A.; Johnston, L.M.; Clayton, H.A.; Blanding, S.; Kleinbaum, D.G.; Backer, L.C.; Moe, C.L. Microbial concentrations on fresh produce are affected by postharvest processing, importation, and season. J. Food Prot. 2008, 71, 2389–2397.
[24]  Selma, M.V.; Luna, M.C.; Martínez-Sánchez, A.; Tudela, J.A.; Beltrán, D.; Baixauli, C.; Gil, M.I. Sensory quality, bioactive constituents and microbiological quality of green and red fresh-cut lettuces (Lactuca sativa L.) are influenced by soil and soilless agricultural production systems. Postharvest Biol. Technol. 2012, 63, 16–24, doi:10.1016/j.postharvbio.2011.08.002.
[25]  Maffei, D.F.; de Arruda Silveira, N.F.; Catanozi, M.P.L.M. Microbiological quality of organic and conventional vegetables sold in Brazil. Food Control 2012, 29, 226–230.
[26]  Valentin-Bon, I.; Jacobson, A.; Monday, S.R.; Feng, P.C.H. Microbiological quality of bagged cut spinach and lettuce mixes. Appl. Environ. Microbiol. 2008, 74, 1240–1242, doi:10.1128/AEM.02258-07.
[27]  Kase, J.A.; Borenstein, S.; Blodgett, R.J.; Feng, P.C.H. Microbial quality of bagged baby spinach and romaine lettuce: Effects of top versus bottom sampling. J. Food Prot. 2012, 75, 132–136, doi:10.4315/0362-028X.JFP-11-097.
[28]  Medina, E.; Romero, C.; Brenes, M.; de Castro, A. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens. J. Food Prot. 2007, 70, 1194–1199.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133