全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Foods  2013 

Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

DOI: 10.3390/foods2030352

Keywords: lycopene, home-processed, thermal treatments, geometric isomers

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g). Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (?17%), while for lutein it was greater in the pulp fraction (?25%). Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (?36%). The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

References

[1]  La Vecchia, C. Tomatoes, lycopene intake, and digestive tract and female hormone-related neoplasm. Exp. Biol. Med. (Maywood) 2002, 227, 860–863.
[2]  Obulesu, M.; Dowlathabad, M.R.; Bramhachari, P.V. Carotenoids and Alzheimer’s disease: An insight into therapeutic role of retinoids in animal models. Neurochem. Int. 2011, 59, 535–541, doi:10.1016/j.neuint.2011.04.004.
[3]  Koh, W.P.; Yuan, J.M.; Wang, R.; Lee, Y.P.; Lee, B.L.; Yu, M.C; Ong, C.N. Plasma carotenoids and risk of acute myocardial infarction in the Singapore Chinese Health Study. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 685–690, doi:10.1016/j.numecd.2009.12.005.
[4]  Hung, R.J.; Zhang, Z.F.; Rao, J.Y.; Pantuck, A.; Reuter, V.E.; Heber, D.; Lu, Q.Y. Protective effects of plasma carotenoids on the risk of bladder cancer. J. Urol. 2006, 176, 1192–1197, doi:10.1016/j.juro.2006.04.030.
[5]  Giovannucci, E. Tomato products, lycopene, and prostate cancer: A review of the epidemiological literature. J. Nutr. 2005, 135, 2030S–2031S.
[6]  Palozza, P.; Simone, R.E.; Catalano, A.; Mele, M.C. Tomato lycopene and lung cancer prevention: From experimental to human studies. Cancers 2011, 3, 2333–2357, doi:10.3390/cancers3022333.
[7]  Sesso, H.D.; Liu, S.; Gaziano, M.; Buring, J.E. Dietary lycopene, tomato-based food products and cardiovascular disease in women. J. Nutr. 2003, 133, 2336–2341.
[8]  Kohlmeier, L.; Kark, J.D.; Gomez-Garcia, E.; Martin, B.C.; Steck, S.E.; Kardinaal, A.F.; Ringstad, J.; Thamm, M.; Masaev, V.; Riemersma, R.; et al. Lycopene and myocardial infarction risk in the EURAMIC study. Am. J. Epidemiol. 1997, 146, 618–626, doi:10.1093/oxfordjournals.aje.a009327.
[9]  Li, H.; Deng, Z.; Liu, R.; Loewen, S.; Tsao, R. Carotenoid compositions of coloured tomato cultivars and contribution to antioxidant activities and protection against H2O2-induced cell death in H9c2. Food Chem. 2013, 136, 878–888, doi:10.1016/j.foodchem.2012.08.020.
[10]  Khachik, F.; Carvalho, L.; Bernstein, P.S.; Muir, G.J.; Zhao, D.Y.; Katz, N.B. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp. Biol. Med. (Maywood) 2002, 227, 845–851.
[11]  Ong, A.S.H.; Tee, E.S. Natural sources of carotenoids from plants and oils. Methods Enzymol. 1992, 213, 142–167, doi:10.1016/0076-6879(92)13118-H.
[12]  Sies, H.; Stahl, W. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr. 1995, 62, 1315S–1321S.
[13]  Abushita, A.A.; Hebshi, E.A.; Daood, H.G.; Biacs, P.A. Determination of antioxidant vitamins in tomatoes. Food Chem. 1997, 60, 207–212, doi:10.1016/S0308-8146(96)00321-4.
[14]  Giovannucci, E.; Ascherio, A.; Rimm, E.B.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C. Intake of carotenoids and retinol in relation to risk of prostate cancer. J. Natl. Cancer Inst. 1995, 87, 1767–1776, doi:10.1093/jnci/87.23.1767.
[15]  Giovannucci, E. Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J. Natl. Cancer Inst. 1999, 91, 317–331, doi:10.1093/jnci/91.4.317.
[16]  Etminan, M.; Takkouche, B.; Caamano-Isorna, F. The role of tomato products and lycopene in the prevention of prostate cancer: A meta-analysis of observational studies. Cancer Epidemiol. Biomarkers Prev. 2004, 13, 340–345.
[17]  G?rtner, C.; Stahl, W.; Sies, H. Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am. J. Clin. Nutr. 1997, 66, 116–122.
[18]  Porrini, M.; Riso, P.; Testolin, G. Absorption of lycopene from single or daily portions of raw and processed tomato. Br. J. Nutr. 1998, 80, 353–361, doi:10.1079/096582198388300.
[19]  Abushita, A.A.; Daood, H.G.; Biacs, P.A. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J. Agric. Food Chem. 2000, 48, 2075–2081, doi:10.1021/jf990715p.
[20]  Thompson, K.A.; Marshall, M.R.; Sims, C.A.; Wei, C.I.; Sargent, S.A.; Scott, J.W. Cultivar, maturity, and heat treatment on lycopene content in tomatoes. J. Food Sci. 2000, 65, 791–795, doi:10.1111/j.1365-2621.2000.tb13588.x.
[21]  Dietz, J.M.; Sri Kantha, S; Erdman, J.W., Jr. Reversed phase HPLC analysis of alpha- and beta-carotene from selected raw and cooked vegetables. Plant Foods Hum. Nutr. 1988, 38, 333–341, doi:10.1007/BF01091731.
[22]  Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014, doi:10.1021/jf0115589.
[23]  Hsu, K.C.; Tan, F.J.; Chi, H.Y. Evaluation of microbial inactivation and physicochemical properties of pressurized tomato juice during refrigerated storage. LWT Food Sci. Technol. 2008, 41, 367–375, doi:10.1016/j.lwt.2007.03.030.
[24]  Georgé, S.; Tourniaire, F.; Gautier, H.; Goupy, P.; Rock, E.; Caris-Veyrat, C. Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem. 2011, 124, 1603–1611, doi:10.1016/j.foodchem.2010.08.024.
[25]  Van het Hof, K.H.; de Boer, B.C.J.; Tijburg, L.B.; Lucius, B.R.; Zijp, I.; West, C.E.; Hautvast, J.G.; Westrate, J.A. Carotenoid bioavailability in humans from tomatoes processed in different ways determined from the carotenoids response in the triglyceride-rich lipoprotein fraction of plasma after a single consumption and in plasma after four days of consumption. J. Nutr. 2000, 130, 1189–1196.
[26]  Courraud, J.; Berger, J.; Cristol, J.P.; Avallone, S. Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chem. 2013, 136, 871–877, doi:10.1016/j.foodchem.2012.08.076.
[27]  Plaza, L.; Sánchez-Moreno, C.; de Ancos, B.; Elez-Martínez, P.; Martín-Belloso, O.; Cano, M.P. Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT Food Sci. Technol. 2011, 44, 834–839, doi:10.1016/j.lwt.2010.12.013.
[28]  Hornero-Mendez, D.; Mínguez-Mosquera, M.I. Bioaccessibility of carotenes from carrots: Effect of cooking and addition of oil. Innov. Food Sci. Emerg. Technol. 2007, 8, 407–412, doi:10.1016/j.ifset.2007.03.014.
[29]  Van Buggenhout, S.; Alminger, M.; Lemmens, L.; Colle, I.; Knockaert, G.; Moelants, K.; van Loey, A.; Hendrickx, M. In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes. Trends Food Sci. Technol. 2010, 21, 607–618, doi:10.1016/j.tifs.2010.09.010.
[30]  Rodriguez-Amaya, D.B. Changes in carotenoids during processing and storage of food. Arch. Latinoam. Nutr. 1999, 49, 38S–47S.
[31]  Nguyen, M.L.; Schwartz, S.J. Lycopene stability during food processing. Proc. Soc. Exp. Biol. Med. 1998, 218, 101–105, doi:10.3181/00379727-218-44274.
[32]  Shierlie, J.; Bretzel, W.; Buhler, I.; Faccin, N.; Hess, D; Steiner, K.; Schuep, W. Content and isomeric ratios of lycopene in food and human blood plasma. Food Chem. 1997, 59, 459–465, doi:10.1016/S0308-8146(96)00177-X.
[33]  Knockaert, G.; Pulissery, S.K.; Colle, I.; van Buggenhout, S.; Hendrickx, M.; van Loey, A. Lycopene degradation, isomerization and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil: Effect of additional thermal and high pressure processing. Food Chem. 2012, 135, 1290–1297, doi:10.1016/j.foodchem.2012.05.065.
[34]  Anguelova, T.; Warthesen, J. Lycopene stability in tomato powders. J. Food Sci. 2000, 65, 67–70, doi:10.1111/j.1365-2621.2000.tb15957.x.
[35]  Demiray, E.; Tulek, Y.; Yilmaz, Y. Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT Food Sci. Technol. 2013, 50, 172–176, doi:10.1016/j.lwt.2012.06.001.
[36]  Tangwongchai, R.; Ledward, D.A.; Ames, J.M. Effect of high-pressure treatment on the texture of cherry tomato. J. Agric. Food Chem. 2000, 48, 1434–1441, doi:10.1021/jf990796p.
[37]  Squarcina, N.; Sandei, L.; Carpi, G.; Rovere, P. Evaluation of different technological treatments on cherry tomatoes by means of a laboratory texturometer. Ind. Conserve 1999, 74, 35–39.
[38]  Ciampa, A; Dell’Abate, M.T.; Masetti, O.; Valentini, M.; Sequi, P. Seasonal chemical-hysical changes of PGI Pachino cherry tomatoes detected by magnetic resonance imaging (MRI). Food Chem. 2010, 122, 1253–1260, doi:10.1016/j.foodchem.2010.03.078.
[39]  Leonardi, C.; Ambrosino, P.; Esposito, F.; Fogliano, V. Antioxidative activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J. Agric. Food Chem. 2000, 48, 4723–4727, doi:10.1021/jf000225t.
[40]  Raffo, A.; Leonardi, C.; Fogliano, V.; Ambrosino, P; Salucci, M.; Gennaro, L.; Bugianesi, R.; Giuffrida, F.; Quaglia, G. Nutritional value of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 2002, 50, 6550–6556, doi:10.1021/jf020315t.
[41]  Raffo, A.; la Malfa, G.; Fogliano, V.; Maiani, G.; Quaglia, G. Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). J. Food Comp. Anal. 2006, 19, 11–19, doi:10.1016/j.jfca.2005.02.003.
[42]  Bugianesi, R.; Salucci, M.; Leonardi, C.; Ferracane, R.; Catasta, G.; Azzini, E.; Maiani, G. Effect of domestic cooking on human bioavailability of naringenin, chlorogenic acid, lycopene and beta-carotene in cherry tomatoes. Eur. J. Nutr. 2004, 43, 360–366, doi:10.1007/s00394-004-0483-1.
[43]  Zanfini, A.; Corbini, G.; la Rosa, C.; Dreassi, E. Antioxidant activity of tomato lipophilic extracts and interactions between carotenoids and α-tocopherol in synthetic mixtures. LWT Food Sci. Technol. 2010, 43, 67–72, doi:10.1016/j.lwt.2009.06.011.
[44]  Sharma, S.K.; le Maguer, M. Lycopene in tomatoes and tomato pulp fractions. Ital. J. Food Sci. 1996, 8, 107–113.
[45]  Clinton, S.K. Lycopene: Chemistry, biology and implications for human health and disease. Nutr. Rev. 1998, 56, 35–51, doi:10.1111/j.1753-4887.1998.tb01691.x.
[46]  Tonucci, L.H.; Holden, J.M.; Beecher, G.R.; Khachik, F.; Davis, C.S.; Mulokozi, G. Carotenoid content of thermally processed tomato-based food products. J. Agric. Food Chem. 1995, 43, 579–586, doi:10.1021/jf00051a005.
[47]  Hart, D.J.; Scott, K.J. Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoids content of vegetables and fruits commonly consumed in the UK. Food Chem. 1995, 54, 101–111, doi:10.1016/0308-8146(95)92669-B.
[48]  Holland, B.; Unwin, I.D.; Buss, D.H. Vegetables, Herbs and Spices. In The composition of Food, 4th ed. ed.; McCance & Widdowson’s: Cambridge, UK, 1991; p. 133.
[49]  Adalid, A.M.; Rosello, S.; Nuez, F. Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, β-carotene and ascorbic acid. J. Food Comp. Anal. 2010, 23, 613–618, doi:10.1016/j.jfca.2010.03.001.
[50]  Al-Wandawi, H.; Abdul-Rahman, M.; Al-Shaikhly, K. Tomato processing wastes as essential raw material source. J. Agric. Food Chem. 1985, 33, 804–807, doi:10.1021/jf00065a009.
[51]  Nguyen, M.; Francis, D.; Schwartz, S. Thermal isomerization susceptibility of carotenoids in different tomato varieties. J. Sci. Food Agric. 2001, 81, 910–917, doi:10.1002/jsfa.911.
[52]  Deming, D.M.; Baker, D.H.; Erdman, J.W., Jr. The relative vitamin A value of 9-cis β-carotene is less and that of 13-cis β-carotene may be greater than the accepted 50% that of all-trans β-carotene in gerbils. J. Nutr. 2002, 132, 2709–2712.
[53]  B?hm, V; Puspitasari-Nienaber, N.L.; Ferruzzi, M.G.; Schwartz, S.G. Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene and zeaxanthin. J. Agric. Food Chem. 2002, 50, 221–226, doi:10.1021/jf010888q.
[54]  Müller, L; Goupy, P.; Fr?hlich, K.; Dangles, O.; Caris-Veyrat, C.; B?hm, V. Comparative study on antioxidant activity of lycopene (Z)-isomers in different assays. J. Agric. Food Sci. 2011, 59, 4504–4511, doi:10.1021/jf1045969.
[55]  Clinton, S.K.; Emenhiser, C.; Schwartz, S.J.; Bostwick, D.G.; Williams, A.W.; Moore, B.J.; Erdman, J.W., Jr. cis-trans lycopene isomers, carotenoids, and retinol in the human prostate. Cancer Epidemiol. Biomarkers Prev. 1996, 5, 823–833.
[56]  Boileau, T.W.; Boileau, A.C.; Erdman, J.W., Jr. Bioavailability of all-trans and cis-isomers of lycopene. Exp. Biol. Med. (Maywood) 2002, 227, 914–919.
[57]  Lambelet, P.; Richelle, M.; Bortlik, K.; Franceschi, F.; Giori, A.M. Improving the stability of lycopene Z-isomers in isomerised tomato extracts. Food Chem. 2009, 112, 156–161, doi:10.1016/j.foodchem.2008.05.053.
[58]  Unlu, N.Z.; Bohn, T.; Francis, D.M.; Nagaraja, H.N.; Clinton, S.K.; Schwartz, S. Lycopene form heat-induced cis-isomer-rich tomato sauce is more bioavailable than from all-trans-rich tomato sauce in human subjects. Br. J. Nutr. 2007, 98, 140–146, doi:10.1017/S0007114507685201.
[59]  Beecher, G.R. Nutrient content of tomatoes and tomato products. Proc. Soc. Exp. Biol. Med. 1998, 218, 98–100, doi:10.3181/00379727-218-44282a.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133